8-Channel, Dual 4-Channel, Triple 2-Channel (Triple SPDT) Multiplexers

DESCRIPTION

The DG4051A, DG4052A and DG4053A are high precision CMOS analog multiplexers. The DG4051A is an 8-channel multiplexer, the DG4052A is a dual 4-channel multiplexer and the DG4053A is a triple 2-channel multiplexer or triple SPDT.
Designed to operate from $\mathrm{a}+2.7 \mathrm{~V}$ to +12 V single supply or from $\mathrm{a} \pm 2.5 \mathrm{~V}$ to $\pm 5 \mathrm{~V}$ dual supplies, the DG4051A, DG4052A and DG4053A are fully specified at + 3 V , + 5 V and $\pm 5 \mathrm{~V}$. All control logic inputs have guaranteed 2.0 V logic high limit when operating from +5 V or $\pm 5 \mathrm{~V}$ supplies and 1.4 V when operating from $\mathrm{a}+3 \mathrm{~V}$ supply.
Channel leakage is typically in the range of 10 pA , and switch charge injection is less than 0.5 pC . Coupled with very low switch capacitance, these devices are ideal for high precision signal switching and multiplexing.
All switches conduct equally well in both directions, offering rail to rail analog signal switching and can be used both as multiplexers as well as de-multiplexers.
The DG4051A, DG4052A and DG4053A operating temperature is specified from $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ and are available in 16 pin TSSOP and the ultra compact 1.8 mm $\times 2.6 \mathrm{~mm}$ miniQFN16 packages.

FEATURES

- +2.7 V to +12 V single supply operation $\pm 2.5 \mathrm{~V}$ to $\pm 5 \mathrm{~V}$ dual supply operation
- Fully specified at $+3 \mathrm{~V},+5 \mathrm{~V}, \pm 5 \mathrm{~V}$ COMPLIANT
- 100Ω maximum on-resistance
- Low voltage, 2.5 V CMOS/TTL compatible
- Low charge injection (< 0.5 pC typ.)
- High - 3 dB bandwidth: 330 MHz to 700 MHz
- Low switch capacitance ($\mathrm{C}_{\mathrm{s} \text { (off) }} 3 \mathrm{pF}$ typ.)
- Excellent isolation and crosstalk performance (typ. 47 dB at 100 MHz)
- 16 pin SOIC, TSSOP and miniQFN package (1.8 mm x 2.6 mm)
- Fully specified from $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ and $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
- Compliant to RoHS directive 2002/95/EC

APPLICATIONS

- Instruments
- Healthcare and medical equipments
- Touch panel
- Automated test equipment
- Automation and control
- High precision data acquisition
- Communication system

FUNCTIONAL BLOCK DIAGRAM AND PIN CONFIGURATION

FUNCTIONAL BLOCK DIAGRAM AND PIN CONFIGURATION

TRUTH TABLE						
Enable Input	Select Inputs			On Switches		
	C	B	A	DG4051A	DG4052A	DG4053A
H	X	X	X	All Switches Open	All Switches Open	All Switches Open
L	L	L	L	X to X0	X to $\mathrm{X0}, \mathrm{Y}$ to $\mathrm{Y0}$	X to XO, Y to YO, Z to Z 0
L	L	L	H	X to X 1	X to $\mathrm{X} 1, \mathrm{Y}$ to Y 1	X to $\mathrm{X} 1, \mathrm{Y}$ to $\mathrm{Y0}, \mathrm{Z}$ to Z 0
L	L	H	L	X to X 2	X to $\mathrm{X} 2, \mathrm{Y}$ to Y 2	X to $\mathrm{X0}, \mathrm{Y}$ to $\mathrm{Y} 1, \mathrm{Z}$ to Z 0
L	L	H	H	X to X3	X to $\mathrm{X} 3, \mathrm{Y}$ to Y 3	X to $\mathrm{X} 1, \mathrm{Y}$ to $\mathrm{Y} 1, \mathrm{Z}$ to Z 0
L	H	L	L	X to X 4	X to $\mathrm{X0}, \mathrm{Y}$ to $\mathrm{Y0}$	X to $\mathrm{X} 0, \mathrm{Y}$ to $\mathrm{Y} 0, \mathrm{Z}$ to Z 1
L	H	L	H	X to X 5	X to $\mathrm{X} 1, \mathrm{Y}$ to Y 1	X to $\mathrm{X} 1, \mathrm{Y}$ to $\mathrm{Y0} 0, \mathrm{Z}$ to Z 1
L	H	H	L	X to $\mathrm{X6}$	X to $\mathrm{X} 2, \mathrm{Y}$ to Y 2	X to $\mathrm{X0} 0, \mathrm{Y}$ to $\mathrm{Y} 1, \mathrm{Z}$ to Z 1
L	H	H	H	X to X7	X to X3, Y to Y3	X to $\mathrm{X} 1, \mathrm{Y}$ to $\mathrm{Y} 1, \mathrm{Z}$ to Z 1

ORDERING INFORMATION		
Temp Range	Package	Part Number
DG4051A, DG4052A, DG4053A		
$-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}{ }^{\text {a }}$	16-Pin TSSOP	DG4051AEQ-T1-E3 DG4052AEQ-T1-E3 DG4053AEQ-T1-E3
	16-Pin miniQFN	DG4051AEN-T1-E4 DG4052AEN-T1-E4 DG4053AEN-T1-E4

Notes:
a. $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ datasheet limits apply.

ABSOLUTE MAXIMUM RATINGS $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted			
Parameter		Limit	Unit
V+ to V-		14	V
GND to V-		7	
Digital Inputs ${ }^{\text {a }}$, $\mathrm{V}_{\mathrm{S}}, \mathrm{V}_{\mathrm{D}}$		$(\mathrm{V}-)-0.3 \text { to }(\mathrm{V}+)+0.3$ or 30 mA , whichever occurs first	
Continuous Current (Any terminal)		30	mA
Peak Current, S or D (Pulsed $1 \mathrm{~ms}, 10 \%$ duty cycle)		100	
Storage Temperature		- 65 to 150	${ }^{\circ} \mathrm{C}$
Power Dissipation ${ }^{\text {b }}$	16-Pin TSSOP ${ }^{\text {c }}$	450	mW
	16-Pin miniQFN ${ }^{\text {d, e }}$	525	
Thermal Resistance ${ }^{\text {b }}$	16-Pin TSSOP	178	C/W
	16-Pin miniQFN ${ }^{\text {e }}$	152	

Notes:
a. Signals on SX, DX, or INX exceeding V+ or V- will be clamped by internal diodes. Limit forward diode current to maximum current ratings.
b. All leads welded or soldered to PC board.
c. Derate $5.6 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $70^{\circ} \mathrm{C}$.
d. Derate $6.6 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $70^{\circ} \mathrm{C}$.
e. Manual soldering with iron is not recommended for leadless components. The miniQFN-16 is a leadless package. The end of the lead terminal is exposed copper (not plated) as a result of the singulation process in manufacturing. A solder fillet at the exposed copper lip cannot be guaranteed and is not required to ensure adequate bottom side solder interconnection.

SPECIFICATIONS FOR DUAL SUPPLIES

Parameter	Symbol	Test Conditions Unless Otherwise Specified$\begin{gathered} \mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-5 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{IN}(\mathrm{~A}, \mathrm{~B}, \mathrm{C} \text { and } \mathrm{ENABLE})}=2.0 \mathrm{~V}, 0.8 \mathrm{~V}^{\mathrm{a}} \end{gathered}$		Temp. ${ }^{\text {b }}$	Typ. ${ }^{\text {c }}$	$-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$		$-40^{\circ} \mathrm{C}$ to $85{ }^{\circ} \mathrm{C}$		Unit	
				Min. ${ }^{\text {d }}$		Max. ${ }^{\text {d }}$	Min. ${ }^{\text {d }}$	Max. ${ }^{\text {d }}$			
Analog Switch											
Analog Signal Range ${ }^{\text {e }}$	$\mathrm{V}_{\text {ANALOG }}$				Full		- 5	5	- 5	5	V
On-Resistance	R_{ON}	$\mathrm{I}_{\mathrm{S}}=1 \mathrm{~mA}, \mathrm{~V}_{\mathrm{D}}=-$	$\mathrm{V},+3 \mathrm{~V}$	Room Full	66		$\begin{aligned} & 100 \\ & 125 \end{aligned}$		$\begin{aligned} & 100 \\ & 118 \end{aligned}$		
On-Resistance Match	$\Delta \mathrm{R}_{\text {ON }}$	$\mathrm{I}_{\mathrm{S}}=1 \mathrm{~mA}, \mathrm{~V}_{\mathrm{D}}$	$\pm 3 \mathrm{~V}$	Room Full	3		$\begin{gathered} 6 \\ 10 \end{gathered}$		$\begin{aligned} & 6 \\ & 8 \end{aligned}$	Ω	
On-Resistance Flatness	$\mathrm{R}_{\text {FLATNESS }}$	$\mathrm{I}_{\mathrm{S}}=1 \mathrm{~mA}, \mathrm{~V}_{\mathrm{D}}=-$	V, + 3 V	Room Full	12		$\begin{aligned} & 16 \\ & 20 \end{aligned}$		$\begin{aligned} & 16 \\ & 18 \end{aligned}$		
Switch Off Leakage Current	$\mathrm{I}_{\text {(off) }}$	$\begin{gathered} \mathrm{V}+=5.5 \mathrm{~V}, \mathrm{~V}-=-5.5 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{D}}= \pm 4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}=\mp 4.5 \mathrm{~V} \end{gathered}$		Room Full	± 0.02	$\begin{gathered} -1 \\ -50 \end{gathered}$	$\begin{gathered} 1 \\ 50 \end{gathered}$	$\begin{array}{r} -1 \\ -5 \end{array}$	$\begin{aligned} & 1 \\ & 5 \end{aligned}$	nA	
	$I_{\text {(}}$ (off)			Room Full	± 0.02	$\begin{gathered} -1 \\ -50 \end{gathered}$	$\begin{gathered} 1 \\ 50 \end{gathered}$	$\begin{aligned} & -1 \\ & -5 \end{aligned}$	$\begin{aligned} & 1 \\ & 5 \end{aligned}$		
Channel On Leakage Current	$\mathrm{I}_{\mathrm{D} \text { (on) }}$	$\begin{array}{r} \mathrm{V}+=5.5 \mathrm{~V}, \mathrm{~V}- \\ \mathrm{V}_{\mathrm{S}}=\mathrm{V}_{\mathrm{D}}= \end{array}$	$\begin{aligned} & 5.5 \mathrm{~V}, \\ & 5 \mathrm{~V} \end{aligned}$	Room Full	± 0.02	$\begin{gathered} -1 \\ -50 \end{gathered}$	$\begin{gathered} 1 \\ 50 \end{gathered}$	$\begin{aligned} & -1 \\ & -5 \end{aligned}$	$\begin{aligned} & 1 \\ & 5 \end{aligned}$		
Digital Control											
Input Current, $\mathrm{V}_{\text {IN }}$ Low	$\mathrm{I}_{\text {IL }}$	$\mathrm{V}_{\text {IN(A, }} \mathrm{B}, \mathrm{C}$ and ENABLE) under test $=0.8 \mathrm{~V}$		Full	0.01	-1	1	-1	1	$\mu \mathrm{A}$	
Input Current, $\mathrm{V}_{\text {IN }}$ High	I_{IH}	$\mathrm{V}_{\mathrm{IN}(\mathrm{A}, \mathrm{B}, \mathrm{C} \text { and ENABLE) }}$ under test $=2.0 \mathrm{~V}$		Full	0.01	-1	1	- 1	1		
Input Capacitance ${ }^{\text {e }}$	$\mathrm{C}_{\text {IN }}$	$\mathrm{f}=1 \mathrm{MHz}$		Room	3.4					pF	
Dynamic Characteristics											
Off Isolation	OIRR	$\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=1 \mathrm{pF}$	$\mathrm{f}=10 \mathrm{MHz}$	Room	67					dB	
			$\mathrm{f}=100 \mathrm{MHz}$	Room	46						
Channel-to-Channel Crosstalk	$\mathrm{X}_{\text {TALK }}$		$\mathrm{f}=10 \mathrm{MHz}$	Room	67						
			$f=100 \mathrm{MHz}$	Room	47						
Bandwith, 3 dB	BW	$\mathrm{R}_{\mathrm{L}}=50 \Omega$	DG4051A	Room	330					MHz	
			DG4052A	Room	450						
			DG4053A	Room	730						

Vishay Siliconix

SPECIFICATIONS FOR DUAL SUPPLIES											
Parameter	Symbol	Test Conditions Unless Otherwise Specified $\mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-5 \mathrm{~V}$$\mathrm{V}_{\operatorname{IN}(\mathrm{A}, \mathrm{~B}, \mathrm{C} \text { and } \mathrm{ENABLE})}=2.0 \mathrm{~V}, 0.8 \mathrm{~V}^{\mathrm{a}}$		Temp. ${ }^{\text {b }}$	Typ. ${ }^{\text {c }}$	$-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$		$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$		Unit	
				Min. ${ }^{\text {d }}$		Max. ${ }^{\text {d }}$	Min. ${ }^{\text {d }}$	Max. ${ }^{\text {d }}$			
Dynamic Characteristics											
Transition Time	${ }^{\text {trRans }}$	$\begin{gathered} \mathrm{R}_{\mathrm{L}}=300 \Omega, C_{\mathrm{L}}=35 \mathrm{pF} \\ \text { see figure } 1,2,3 \end{gathered}$			Room Full	36		$\begin{aligned} & \hline 110 \\ & 127 \end{aligned}$		$\begin{aligned} & \hline 110 \\ & 117 \end{aligned}$	ns
Enable Turn-On Time	${ }^{\text {toN }}$			Room Full	31		$\begin{aligned} & \hline 108 \\ & 119 \end{aligned}$		$\begin{aligned} & 108 \\ & 114 \end{aligned}$		
Enable Turn-Off Time	$\mathrm{t}_{\text {OFF }}$			Room Full	29		$\begin{gathered} \hline 92 \\ 103 \end{gathered}$		$\begin{aligned} & 92 \\ & 98 \end{aligned}$		
Break-Before-Make Time Delay	t_{D}			Room Full		1		1			
Charge Injection ${ }^{\text {e }}$	Q	$\mathrm{V}_{\mathrm{g}}=0 \mathrm{~V}, \mathrm{R}_{\mathrm{g}}$	$=1 \mathrm{nF}$	Room	0.25					pC	
Off Isolation ${ }^{\text {e }}$	OIRR	$\begin{gathered} R_{L}=50 \Omega, C_{L}=1 \mathrm{pF} \\ f=100 \mathrm{kHz} \end{gathered}$		Room	<-90					dB	
Channel-to-Channel Crosstalk ${ }^{\text {e }}$	$\mathrm{X}_{\text {TALK }}$			Room	<-90						
Source Off Capacitance ${ }^{e}$	$\mathrm{C}_{\text {S(off) }}$	$\mathrm{f}=1 \mathrm{MHz}$	DG4051A	Room	3					pF	
			DG4052A	Room	3						
			DG4053A	Room	3						
Drain Off Capacitance ${ }^{\text {e }}$	$C_{D(\text { (ff) }}$	$\mathrm{f}=1 \mathrm{MHz}$	DG4051A	Room	12						
			DG4052A	Room	7						
			DG4053A	Room	4						
Channel On Capacitance ${ }^{e}$	$C_{\text {D(on) }}$	$\mathrm{f}=1 \mathrm{MHz}$	DG4051A	Room	17						
			DG4052A	Room	13						
			DG4053A	Room	11						
Total Harmonic Distortion ${ }^{\text {e }}$	THD	$\begin{gathered} \text { Signal }=5 \mathrm{~V}_{\mathrm{RMS}}, \\ 20 \mathrm{~Hz} \text { to } 20 \mathrm{kHz}, \mathrm{R}_{\mathrm{L}}=600 \Omega \end{gathered}$		Room	0.28					\%	
Power Supplies											
Power Supply Current	$1+$	$\begin{gathered} \mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-5 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{IN}(\mathrm{~A}, \mathrm{~B}, \mathrm{C} \text { and } \mathrm{ENABLE})}=0 \text { or } 5 \mathrm{~V} \end{gathered}$		Room Full	0.05		$\begin{gathered} 1 \\ 10 \end{gathered}$		$\begin{gathered} 1 \\ 10 \end{gathered}$	$\mu \mathrm{A}$	
Negative Supply Current	I-			Room Full	-0.05	$\begin{gathered} \hline-1 \\ -10 \end{gathered}$		$\begin{gathered} \hline-1 \\ -10 \end{gathered}$			
Ground Current	$\mathrm{I}_{\text {GND }}$			Room Full	-0.05	$\begin{gathered} -1 \\ -10 \end{gathered}$		$\begin{gathered} -1 \\ -10 \end{gathered}$			

Vishay Siliconix

Notes:

a. $\mathrm{V}_{\mathrm{IN}}=$ input voltage to perform proper function.
b. Room $=25^{\circ} \mathrm{C}$, Full = as determined by the operating temperature suffix.
c. Typical values are for DESIGN AID ONLY, not guaranteed nor subject to production testing.
d. The algebraic convention whereby the most negative value is a minimum and the most positive a maximum, is used in this data sheet.
e. Guaranteed by design, not subject to production test.

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

TYPICAL CHARACTERISTICS $25^{\circ} \mathrm{C}$, unless otherwise noted

On-Resistance vs. V_{D} and Single Supply Voltage

On-Resistance vs. Analog Voltage and Temperature at $\mathrm{V}_{\mathrm{CC}}=+3 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=0 \mathrm{~V}$

On-Resistance vs. Analog Voltage and Temperature at $\mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-5 \mathrm{~V}$

On-Resistance vs. V_{D} and Dual Supply Voltage

On-Resistance vs. Analog Voltage and Temperature at $\mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=0 \mathrm{~V}$

Supply Current vs. Input Switching Frequency

DG4051A, DG4052A, DG4053A

Vishay Siliconix
TYPICAL CHARACTERISTICS $25^{\circ} \mathrm{C}$, unless otherwise noted

Leakage Current vs. Temperature

Switching Time vs. Temperature

DG4052A Insertion Loss, Off-Isolation, Crosstalk vs. Frequency at ± 5 V Supply

DG4051A Insertion Loss, Off-Isolation, Crosstalk vs. Frequency at ± 5 V Supply

DG4053A Insertion Loss, Off-Isolation,
Crosstalk vs. Frequency at ± 5 V Supply

TYPICAL CHARACTERISTICS $25^{\circ} \mathrm{C}$, unless otherwise noted

TEST CIRCUITS

Figure 1. Transition Time

TEST CIRCUITS

Figure 2. Enable Switching Time

TEST CIRCUITS

Figure 3. Break-Before-Make

V_{O}

Figure 4. Charge Injection

TEST CIRCUITS

Figure 5. Insertion Loss

Figure 7. Crosstalk

Off Isolation $=20 \log \frac{V_{\text {OUT }}}{V_{\text {IN }}}$

Figure 6. Off Isolation

Figure 8. Source, Drain Capacitance

[^0]Package Information

Thin miniQFN16 Case Outline

Top view

Bottom view

DIMENSIONS	MILLIMETERS ${ }^{(1)}$			INCHES		
	MIN.	NOM.	MAX.	MIN.	NOM.	MAX.
A	0.50	0.55	0.60	0.020	0.022	0.024
A1	0	-	0.05	0	-	0.002
A3	$0.15 \text { ref. }$			$0.006 \text { ref. }$		
b	0.15	0.20	0.25	0.006	0.008	0.010
D	2.50	2.60	2.70	0.098	0.102	0.106
e	0.40 BSC			0.016 BSC		
E	1.70	1.80	1.90	0.067	0.071	0.075
L	0.35	0.40	0.45	0.014	0.016	0.018
L1	0.45	0.50	0.55	0.018	0.020	0.022
$\mathrm{N}^{(3)}$	16			16		
$\mathrm{Nd}{ }^{(3)}$	4			4		
$\mathrm{Ne}{ }^{(3)}$	4			4		

Notes

${ }^{(1)}$ Use millimeters as the primary measurement.
${ }^{(2)}$ Dimensioning and tolerances conform to ASME Y14.5M. - 1994.
${ }^{(3)} \mathrm{N}$ is the number of terminals. Nd and Ne is the number of terminals in each D and E site respectively.
(4) Dimensions b applies to plated terminal and is measured between 0.15 mm and 0.30 mm from terminal tip.
${ }^{(5)}$ The pin 1 identifier must be existed on the top surface of the package by using identification mark or other feature of package body.
${ }^{(6)}$ Package warpage max. 0.05 mm .

ECN: T16-0226-Rev. B, 09-May-16

DWG: 6023

TSSOP: 16-LEAD

Symbols	DIMENSIONS IN MILLIMETERS		
	Min	Nom	Max
A	-	1.10	1.20
A1	0.05	0.10	0.15
A2	-	1.00	1.05
B	0.22	0.28	0.38
C	-	0.127	-
D	4.90	5.00	5.10
E	6.10	6.40	6.70
E1	4.30	4.40	4.50
e	-	0.65	-
L	0.50	0.60	0.70
L1	0.90	1.00	1.10
y	-	-	0.10
11	0°	3°	6°
ECN: S-61920-Rev. D, 23-Oct-06			
DWG: 5624			

www.vishay.com

RECOMMENDED MINIMUM PAD FOR TSSOP-16

Recommended Minimum Pads Dimensions in inches (mm)

RECOMMENDED MINIMUM PADS FOR MINI QFN 16L

Mounting Footprint
Dimensions in mm (inch)

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

[^0]: Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and reliability data, see www.vishay.com/ppg?69828.

