RoHS

COMPLIANT

HALOGEN

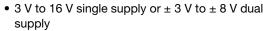
FREE

1.4 pC Charge Injection, 100 pA Leakage, Quad SPST Switches

DESCRIPTION

The DG611E, DG612E, and DG613E contain four independently selectable SPST switches. They offer improved performance over the industry standard DG611 and DG611A series. The DG611E and DG612E have all switches normally closed and normally open respectively, while the DG613E has 2 normally open and 2 normally closed switches.

They are designed to operate from a 3 V to 16 V single supply or from \pm 3 V to \pm 8 V dual supplies and are fully specified at +3 V, +5 V and \pm 5 V. All control logic inputs have guaranteed 2 V logic high limits when operating from +5 V or \pm 5 V supplies and 1.4 V when operating from a +3 V supply.

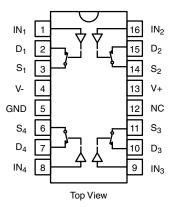

The DG611E, DG612E, and DG613E switches conduct equally well in both directions and offer rail to rail analog signal handling.

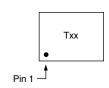
1.4 pC low charge injection, coupled with very low switch capacitance: 3 pF, fast switching speed: t_{on}/t_{off} 23 ns/14 ns and excellent 3 dB bandwidth: 1 GHz, make these products ideal for precision instrumentation, high-end data acquisition, automated test equipment and high speed communication applications.

Operation temperature is specified from -40 °C to +125 °C.

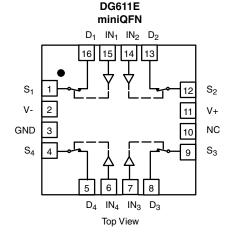
The DG611E, DG612E, and DG613E are available in 16 lead SOIC, TSSOP and the space saving 1.8 mm x 2.6 mm miniQFN packages.

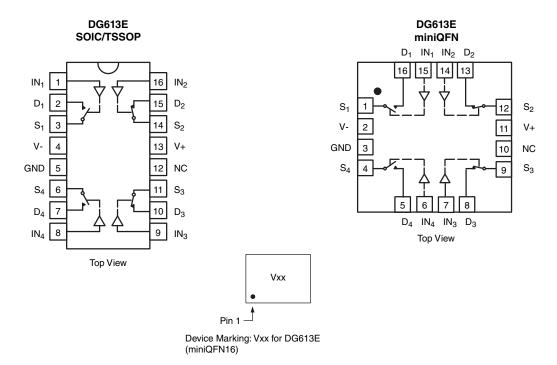
FEATURES


- Leakage current < 0.25 nA at 85 °C
- Low switch capacitance (C_{soff} 3 pF typ.)
- Fully specified with single supply operation at 3 V, 5 V, and dual supplies at ± 5 V
- Low voltage, 2.5 V CMOS/TTL compatible
- 1 GHz, 3 dB bandwidth
- Excellent isolation performance (-59 dB at 10 MHz)
- Excellent crosstalk performance (-74 dB at 10 MHz)
- Fully specified from -40 °C to +85 °C and -40 °C to +125 °C
- 16 lead SOIC, TSSOP and miniQFN package (1.8 mm x 2.6 mm)
- Material categorization: for definitions of compliance please see www.vishay.com/doc?99912


APPLICATIONS

- · Precision instrumentation
- Medical instrumentation
- Automated test equipment
- · High speed communications applications
- High-end data acquisition
- Sample and hold applications
- · Sample and hold systems


FUNCTIONAL BLOCK DIAGRAM AND PIN CONFIGURATION


Device Marking: Txx for DG611E (miniQFN16) Uxx for DG612E Vxx for DG613E xx = Date/Lot Traceability Code

TRUTH TABLE							
LOGIC	DG611E	DG612E					
0	On	Off					
1	Off	On					

S20-0209-Rev. C, 20-Apr-2020 **1** Document Number: 78910

FUNCTIONAL BLOCK DIAGRAM AND PIN CONFIGURATION

TRUTH TABLE							
LOGIC	SW1, SW4	SW2, SW3					
0	Off	On					
1	On	Off					

ORDERING INFORMATION						
TEMP. RANGE	PACKAGE	PART NUMBER				
		DG611EEQ-T1-GE4				
	16-pin TSSOP	DG612EEQ-T1-GE4				
		DG613EEQ-T1-GE4				
		DG611EEY-T1-GE4				
-40 °C to +125 °C ^a	16-pin narrow SOIC	DG612EEY-T1-GE4				
		DG613EEY-T1-GE4				
		DG611EEN-T1-GE4				
	16-pin miniQFN	DG612EEN-T1-GE4				
		DG613EEN-T1-GE4				

Note

a. -40 °C to +85 °C datasheet limits apply

www.vishay.com

Vishay Siliconix

ABSOLUTE MAXIMUM RATI	NGS (T _A = 25 °C, unless other	wise noted)		
PARAMETER		LIMIT	UNIT	
V+ to V-		-0.3 to +18		
GND to V-		18		
V_S, V_D	(V-) - 0.3 to (V+) + 0.3 or 30 mA, whichever occurs first	V		
Digital inputs ^a		(GND) - 0.3 to 18		
Continuous current (any terminal)		30	mA	
Peak current, S or D (pulsed 1 ms, 10 %	duty cycle)	100		
Storage temperature		-65 to +150		
	16-pin TSSOP ^c	450		
Power dissipation (package) ^b	16-pin miniQFN ^d	525	mW	
	16-pin narrow SOIC ^e	640		
	16-pin TSSOP	178		
Thermal resistance (package) b	16-pin miniQFN	152	°C/W	
	16-pin narrow SOIC	125		
ESD / HBM	EIA / JESD22-A114-A	2K	V	
ESD / CDM	EIA / JESD22-C101-A	1K	V	
Latch up	JESD78	300	mA	

Notes

- a. Signals on SX, DX, or INX exceeding V+ or V- will be clamped by internal diodes. Limit forward diode current to maximum current ratings
- b. All leads welded or soldered to PC board
- c. Derate 5.6 mW/°C above 70 °C
- d. Derate 6.6 mW/°C above 70 °C
- e. Derate 8 mW/°C above 70 °C
- f. Manual soldering with iron is not recommended for leadless components. The miniQFN-16 is a leadless package. The end of the lead terminal is exposed copper (not plated) as a result of the singulation process in manufacturing. A solder fillet at the exposed copper lip cannot be guaranteed and is not required to ensure adequate bottom side solder interconnection

www.vishay.com

Vishay Siliconix

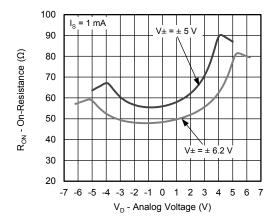
		TEST CONDITIONS								
PARAMETER	SYMBOL	UNLESS OTHERWISE SPECIFIED	TEMP. b		-40 °C to	o +125 °C	-40 °C t	o +85 °C	UNIT	
TATAMETER	OTTO	V + = +5 V, V - = -5 V $V_{IN} = 2 V, 0.8 V^a$	12	TYP. c	MIN. d	MAX. d	MIN. d		1	
Analog Switch		V _{IN} – 2 V, 0.3 V			IVIII V.	1117-04.	101114.	IVI/JX.		
Analog signal range ^e	V		Full	l _	- 5	5	- 5	5	Ιv	
0 0 0	V _{ANALOG}			72	- 5	115	- 5	115	V	
Drain-source on-resistance	R _{DS(on)}	$I_S = 1 \text{ mA}, V_D = -3 \text{ V}, 0 \text{ V}, +3 \text{ V}$	Room Full	12	-		_	140		
on resistance				-	-	160	-		-	
On-resistance match	$\Delta R_{DS(on)}$	$I_S = 1 \text{ mA}, V_D = \pm 3 \text{ V}$	Room Full	0.6	-	2.5 5	-	2.5 4.5	Ω	
			Room	15	-	20	_	20	1	
On-resistance flatness	R _{flat(on)}	$I_S = 1 \text{ mA}, V_D = -3 \text{ V}, 0 \text{ V}, +3 \text{ V}$	Full	-	-	30	-	25	1	
	I _{S(off)}	V. FEVV FEV	Room	± 0.0005	-0.1	0.1	-0.1	0.1		
Switch off	0(011)	$V_{+} = 5.5 \text{ V}, V_{-} = -5.5 \text{ V}$ $V_{D} = +4.5 \text{ V} / -4.5 \text{ V}$	Full	-	-2	2	-0.25	0.25	ĺ	
leakage current		$V_{S} = -4.5 \text{ V} / +4.5 \text{ V}$	Room	±0.006	-0.1	0.1	-0.1	0.1	nA	
	I _{D(off)}		Full	-	-2	2	-0.25	0.25	1	
Switch on		V+ = 5.5 V, V- = -5.5 V	Room	±0.008	-0.1	0.1	-0.1	0.1	1	
leakage current	I _{D(on)}	$V_D = V_S = \pm 4.5 \text{ V}$	Full	-	-6	6	-0.25	0.25	1	
Digital Control							l	<u>l</u>		
Input current, V _{IN} low	I _{IL}	V _{IN} under test = 0.8 V	Full	0.01	-0.1	0.1	-0.1	0.1	Ι.	
Input current, V _{IN} high	I _{IH}	V _{IN} under test = 2 V	Full	0.01	-0.1	0.1	-0.1	0.1	μA	
Input capacitance e	C _{IN}	f = 1 MHz		3	-	-	-	-	pF	
Dynamic Characterist										
-			Room	23	_	50	_	50	ns	
Turn-on time	t _{ON}	$R_L = 300 \Omega, C_L = 35 pF$ $V_S = \pm 3 V$	Full	-	-	75	-	60		
			Room	14	-	35	-	35		
Turn-off time	t _{OFF}		Full	-	-	50	-	45		
Break-before-make		DG613E only, $V_S = 3 \text{ V}$	Room	15	-	-	-	-	1	
time delay	t _{BBM}	$R_L = 300 \Omega$, $C_L = 35 pF$	Full	-	2	-	2	-	-	
Charge injection e	Q _{INJ}	$V_{g} = 0 \text{ V}, R_{g} = 0 \Omega, C_{L} = 1 \text{ nF}$	Room	1.4	-	-	-	-	рС	
Off isolation e	OIRR		Room	-59	-	-	-	-	<u> </u>	
Channel-to-channel crosstalk e	X _{TALK}	$R_L = 50 \Omega$, $C_L = 5 pF$ f = 10 MHz	Room	-74	-	-	-	-	dB	
Bandwidth ^e	BW	$R_L = 50 \Omega$, $C_L = 5 pF$	Room	1	-	-	-	-	GHz	
Source off capacitance e	C _{S(off)}		Room	3	-	-	-	-		
Drain off capacitance ^e	C _{D(off)}	f = 1 MHz; V _S = 0 V	Room	3	-	-	-	-	рF	
Drain on capacitance ^e	C _{D(on)}	f = 1 MHz; V _S = V _D = 0 V	Room	7	-	-	-	-	-	
Total harmonic distortion ^e	THD	Signal = 1 V_{RMS} , 20 Hz to 20 kHz, $R_L = 600 \Omega$	Room	0.13	=	-	-	-	%	
Power Supplies										
Dawar augusti a a a a a	1.		Room	0.001	-	0.1	-	0.1		
Power supply current	l+		Full	-	-	1	-	1		
Negative supply		V+ = +5 V, V- = -5 V	Room	-0.001	-0.1	-	-0.1	-	1	
current	I-	$V_{IN} = 0 \text{ V or } 5 \text{ V}$	Full	-	-1	-	-1	-	μA	
0				-0.001	-0.1	-	-0.1	-		
Ground current	I_{GND}		Full		-1	-	-1		1	

www.vishay.com

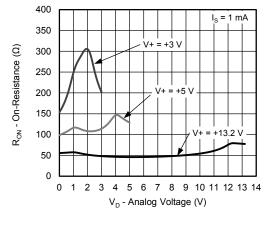
Vishay Siliconix

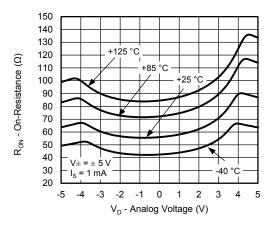
		TEST CONDITIONS		LIMITS					
PARAMETER	SYMBOL	UNLESS OTHERWISE SPECIFIED	TEMP.b		-40 °C to	o +125 °C	-40 °C t	o +85 °C	UNI
		V+ = +5 V, V- = 0 V $V_{IN} = 2 V, 0.8 V a$		TYP.C	MIN. d	MAX. d	MIN. d	MAX. d	
Analog Switch	T			•		,	1	T	
Analog signal range e	V _{ANALOG}		Full	-	0	5	0	5	V
Drain-source	R _{DS(on)}	V+ = 5 V, V- = 0 V	Room	130	-	170	-	170	
on-resistance	1 103(011)	$I_S = 1 \text{ mA}, V_D = +3.5 \text{ V}$	Full	-	-	235	-	215	
On-resistance match	$\Delta R_{DS(on)}$	V+ = 5 V, V- = 0 V,	Room	0.6	-	5	-	5	Ω
	DO(OH)	$I_S = 1 \text{ mA}, V_D = 3.5 \text{ V}$	Full	-	-	12	-	10	
On-resistance flatness	R _{flat(on)}	V+ = 5 V, V- = 0 V,	Room	29	-	50	-	50	
	· ·liat(OII)	$I_S = 1 \text{ mA}, V_D = 0 \text{ V}, 3.5 \text{ V}$	Full	-	-	100	-	90	
	I _{S(off)}	V+ = 5.5 V, V- = 0 V	Room	± 0.0005	-0.1	0.1	-0.1	0.1	
Switch off leakage current		$V_D = 4.5 \text{ V} / 1 \text{ V}$	Full	-	-2	2	-0.25	0.25	
.ca.tago carront	I _{D(off)}	$V_{S} = 1 \text{ V} / 4.5 \text{ V}$	Room	±0.006	-0.1	0.1	-0.1	0.1	nA
	-D(OII)		Full	-	-2	2	-0.25	0.25	
Switch on	I _{D(on)}	V+ = 5.5 V, V- = 0 V	Room	±0.008	-0.1	0.1	-0.1	0.1	
leakage current	-D(011)	$V_D = V_S = 1 \text{ V} / 4.5 \text{ V}$	Full	-	-6	6	-0.25	0.25	
Digital Control	T			1		1	1	ı	
Input current, V _{IN} low	I _{IL}	V _{IN} under test = 0.8 V	Full	0.01	-0.1	0.1	-0.1	0.1	μA
Input current, V _{IN} high	I _{IH}	V _{IN} under test = 2 V	Full	0.01	-0.1	0.1	-0.1	0.1	, i
Input capacitance e	C _{IN}	f = 1 MHz	Room	4	-	-	<u> </u>	-	pF
Dynamic Characterist	ics					1		ı	
Turn-on time e	t _{ON}	$R_L = 300 \ \Omega, \ C_L = 35 \ pF$ $V_S = 3 \ V$	Room	33	-	60	-	60	ns
			Full	-	-	90	-	80	
Turn-off time e			Room	14	-	35	-	35	
	-011		Full	-	-	45	-	40	
Break-before-make	t _{BBM}	DG613E only, $V_S = 3 \text{ V}$	Room	19	-	-	-	-	
time delay e	*DDIVI	$R_L = 300 \Omega, C_L = 35 pF$	Full	-	2	-	2	-	
Charge injection e	Q _{INJ}	$V_g = 0 \text{ V}, R_g = 0 \Omega, C_L = 1 \text{ nF}$	Full	1.5	-	-	-	-	рC
Off isolation e	OIRR	$R_L = 50 \Omega, C_L = 5 pF$	Room	-59	-	-	-	-	
Channel-to-channel crosstalk ^e	X _{TALK}	f = 10 MHz	Room	-70	-	-	-	-	dB
Bandwidth ^e	BW	$R_L = 50 \Omega$, $C_L = 5 pF$	Room	880	-	-	-	-	MHz
Source off capacitance e	C _{S(off)}	f = 1 MHz; V _S = 0 V	Room	3	-	-	-	-	_
Drain off capacitance e	C _{D(off)}		Room	3	-	=.	-	-	pF
Drain on capacitance e	C _{D(on)}	$f = 1 \text{ MHz}; V_S = V_D = 0 \text{ V}$	Room	7	-		-	-	
Power Supplies									
Power supply current	l+		Room	0.001	-	0.1	-	0.1	
	IT.		Full	-	ı	1	-	1	- μΑ
Negative supply	I-	V _{IN} = 0 V or 5 V	Room	-0.001	-0.1	-	-0.1	-	
current	I-	V _{IN} = 0 v or 5 v	Full	_	-1		-1	-	
Ground current	lo::=		Room	-0.001	-0.1	-	-0.1	-	
Ground current	I_{GND}		Full	-	-1	-	-1	_	

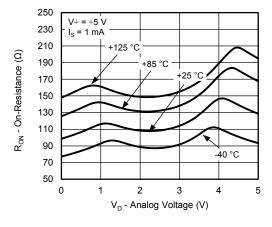
		TEST CONDITIONS	TEMP. b	LIMITS					
PARAMETER	SYMBOL	UNLESS OTHERWISE SPECIFIED V + = +3 V, V - = - 0 V			-40 °C to +125 °C		-40 °C to +85 °C		UNIT
		V + = +3 V, V - = -0 V $V_{IN} = 1.4 \text{ V}, 0.6 \text{ V}^{a}$		TYP. c	MIN. d	MAX. d	MIN. d	MAX. d	
Analog Switch									
Analog signal range e	V _{ANALOG}		Full	-	0	3	0	3	V
Drain source On-resistance	R _{DS(on)}	I _S = 1 mA, V _D = +1.5 V	Room Full	305	-	420 600	-	420 500	Ω
				±	-0.1	0.1	-0.1	0.1	
Switch off	I _{S(off)}	V+ = 3.3 V, V- = 0 V V _D = 3 V / 0.3 V	Room Full	0.0005	-2	2	-0.25	0.25	-
leakage current		$V_{\rm D} = 3 \text{ V} / 0.3 \text{ V}$ $V_{\rm S} = 0.3 \text{ V} / 3 \text{ V}$	Room	±0.006	-0.1	0.1	-0.1	0.1	nA
	I _{D(off)}	S	Full	-	-2	2	-0.25	0.25	IIA
Switch on		V+ = 3.3 V, V- = 0 V	Room	±0.008	-0.1	0.1	-0.1	0.1	1
leakage current	I _{D(on)}	$V_D = V_S = 0.3 \text{ V} / 3 \text{ V}$	Full	-	-6	6	-0.25	0.25	
Digital Control			L			L	L		
Input current, V _{IN} low	I _{IL}	V _{IN} under test = 0.6 V	Full	0.01	-0.1	0.1	-0.1	0.1	
Input current, V _{IN} high	I _{IH}	V _{IN} under test = 1.4 V	Full	0.01	-0.1	0.1	-0.1	0.1	μA
Input capacitance e	C _{IN}	f = 1 MHz	Room	4	-	-	-	-	pF
Dynamic Characterist	ics								
Turn-on time	t _{ON}	$R_L = 300 \Omega, C_L = 35 pF$ $V_S = 2 V$	Room	76	-	115	-	115	- ns
rum on time			Full	-	-	180	-	155	
Turn-off time	t _{OFF}		Room	31	-	58	-	58	
Turn on time	OFF		Full	-	-	65	-	60	110
Break-before-make	t _{BBM}	DG613 only, $V_S = 2 V$	Room	60	-	-	-	-	
time delay	PDIVI	$R_L = 300 \Omega, C_L = 35 pF$	Full	-	10	-	10	-	
Charge injection e	Q _{INJ}	$V_g = 0 \text{ V}, R_g = 0 \Omega, C_L = 1 \text{ nF}$	Room	1.4	-	-	-	-	рC
Off isolation e	OIRR	$R_L = 50 \Omega$, $C_L = 5 pF$	Room	-59	-	-	-	-	
Channel-to-channel crosstalk ^e	X _{TALK}	f = 10 MHz	Room	-71	-	-	-	-	dB
Bandwidth ^e	BW	$R_L = 50 \Omega$, $C_L = 5 pF$	Room	830	-	-	-	-	MHz
Source off capacitance e	C _{S(off)}	f = 1 MHz; V _S = 0 V	Room	3	-	-	-	-	
Drain off capacitance e	$C_{D(off)}$, 6	Room	4	-	-	-	-	pF
Drain on capacitance e	C _{D(on)}	$f = 1 \text{ MHz}; V_S = V_D = 0 \text{ V}$	Room	7	-	-	-	-	
Power Supplies									
Power supply current	l+		Room Full	0.001	-	0.1	-	0.1	
Negative events			Room	-0.001	-0.1	-	-0.1	-	
Negative supply current	l-	$V_{IN} = 0 \text{ V or } 3 \text{ V}$	Full	-0.001	-0.1	_	-0.1	_	μA
			Room	-0.001	-0.1	-	-0.1	_	
Ground current	I _{GND}		Full	0.001	-0.1	-	-0.1	-	

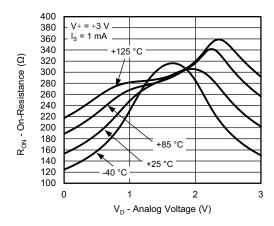

Notes

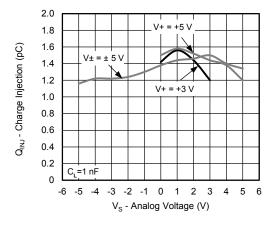
- a. V_{IN} = input voltage to perform proper function
- b. Room = 25 °C, Full = as determined by the operating temperature suffix
- c. Typical values are for DESIGN AID ONLY, not guaranteed nor subject to production testing
- d. The algebraic convention whereby the most negative value is a minimum and the most positive a maximum, is used in this datasheet
- e. Guaranteed by design, not subject to production test


Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

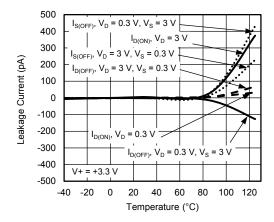

TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)

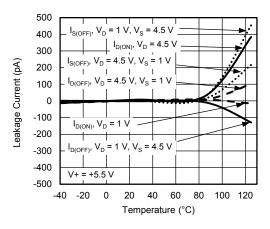

On-Resistance vs. V_D (Dual Supply)

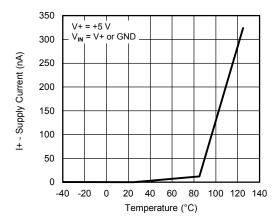

On-Resistance vs. V_D (Single Supply)

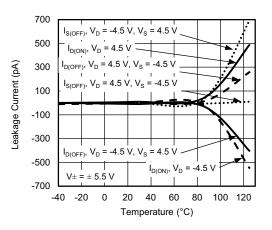

On-Resistance vs. Temperature (Dual Supply)

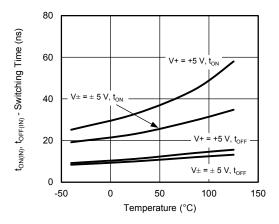
On-Resistance vs. Temperature (Single Supply)

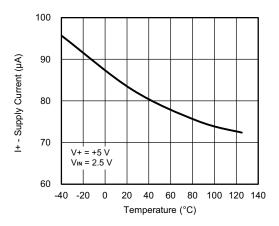

On-Resistance vs. Temperature (Single Supply)


Charge Injection vs. Analog Voltage


TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)

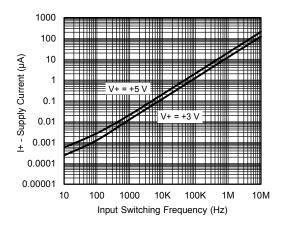

Leakage Current vs. Temperature


Leakage Current vs. Temperature

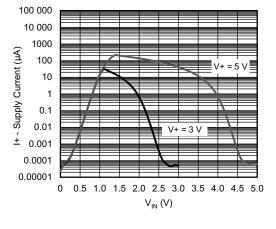

Supply Current vs. Temperature

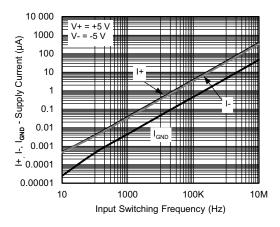
Leakage Current vs. Temperature

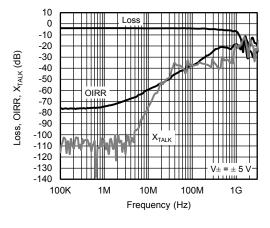
Switching Time vs. Temperature

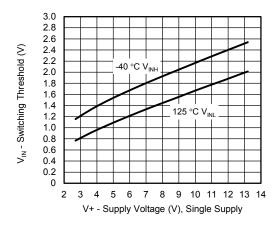


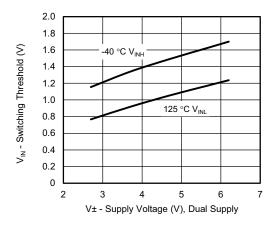
Supply Current vs. Temperature


ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishav.com/doc?91000

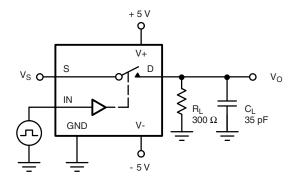

TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)


Supply Current vs. Switching Frequency

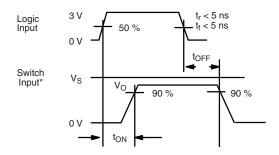

Supply Current vs. Input Voltage


Supply Current vs. Switching Frequency

Insertion Loss, Off-Isolation, Crosstalk vs. Frequency



Switching Threshold vs. Supply Voltage (Single Supply)


Switching Threshold vs. Supply Voltage (Dual Supply)

TEST CIRCUITS

 C_{L} (includes fixture and stray capacitance)

$$V_O = V_S$$

$$\frac{R_L}{R_L + r_{DS(on)}}$$

Note: Logic input waveform is inverted for switches that have the opposite logic sense control

Fig. 1 - Switching Time

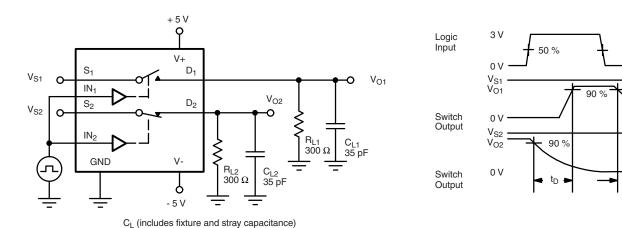
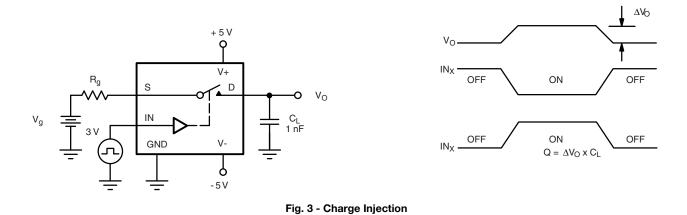



Fig. 2 - Break-Before-Make (DG613E)

TEST CIRCUITS

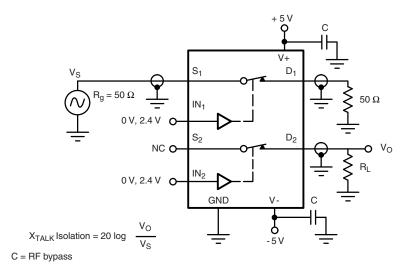


Fig. 4 - Crosstalk

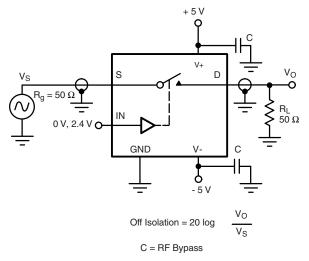


Fig. 5 - Off-Isolation

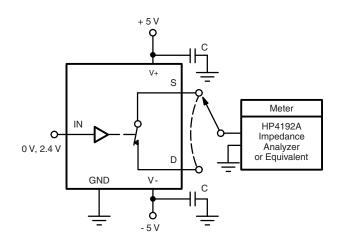
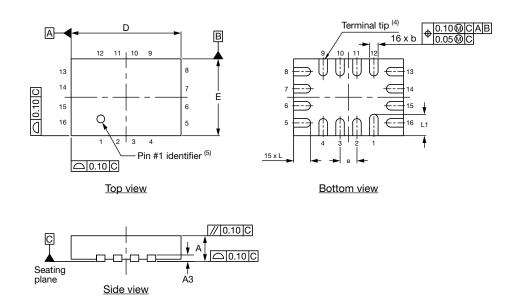



Fig. 6 - Source / Drain Capacitances

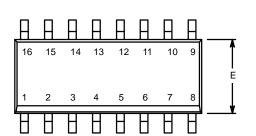
Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package / tape drawings, part marking, and reliability data, see www.vishay.com/ppg278910.

Thin miniQFN16 Case Outline

DIMENSIONS		MILLIMETERS (1)			INCHES		
DIMENSIONS	MIN.	NOM.	MAX.	MIN.	NOM.	MAX.	
А	0.50	0.55	0.60	0.020	0.022	0.024	
A1	0	-	0.05	0	-	0.002	
A3		0.15 ref.			0.006 ref.		
b	0.15	0.20	0.25	0.006	0.008	0.010	
D	2.50	2.60	2.70	0.098	0.102	0.106	
е		0.40 BSC			0.016 BSC		
E	1.70	1.80	1.90	0.067	0.071	0.075	
L	0.35	0.40	0.45	0.014	0.016	0.018	
L1	0.45	0.50	0.55	0.018	0.020	0.022	
N ⁽³⁾	16				16		
Nd ⁽³⁾		4			4		
Ne ⁽³⁾		4 4			4		

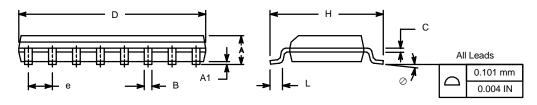
Notes

- (1) Use millimeters as the primary measurement.
- (2) Dimensioning and tolerances conform to ASME Y14.5M. 1994.
- (3) N is the number of terminals. Nd and Ne is the number of terminals in each D and E site respectively.
- (4) Dimensions b applies to plated terminal and is measured between 0.15 mm and 0.30 mm from terminal tip.
- (5) The pin 1 identifier must be existed on the top surface of the package by using identification mark or other feature of package body.
- (6) Package warpage max. 0.05 mm.


ECN: T16-0226-Rev. B, 09-May-16

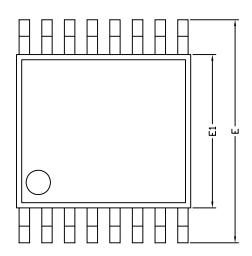
DWG: 6023

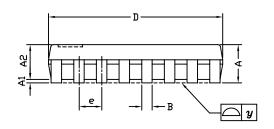
Revision: 09-May-16 1 Document Number: 64694

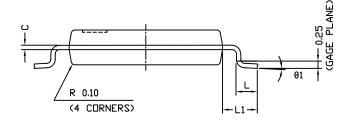

SOIC (NARROW): 16-LEAD
JEDEC Part Number: MS-012

	MILLIMETERS		INC	HES			
Dim	Min	Max	Min	Max			
Α	1.35	1.75	0.053	0.069			
A ₁	0.10	0.20	0.004	0.008			
В	0.38	0.51	0.015	0.020			
С	0.18	0.23	0.007	0.009			
D	9.80	10.00	0.385	0.393			
E	3.80	4.00	0.149	0.157			
е	1.27	BSC	0.050	BSC			
Н	5.80	6.20	0.228	0.244			
L	0.50	0.93	0.020	0.037			
0	0°	8°	0°	8°			
FCN: S-0	FCN: S-03946—Rev. F. 09-Jul-01						

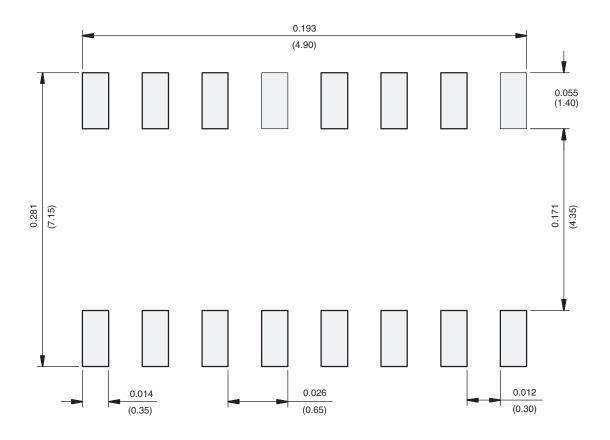
ECN: S-03946—Rev. F, 09-Jul-01


DWG: 5300



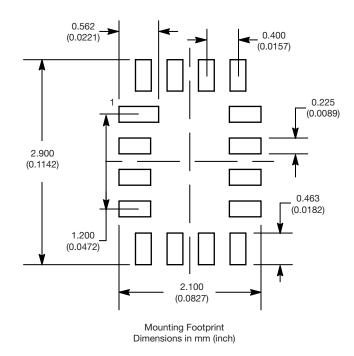

Document Number: 71194 www.vishay.com 02-Jul-01 sww.vishay.com

TSSOP: 16-LEAD

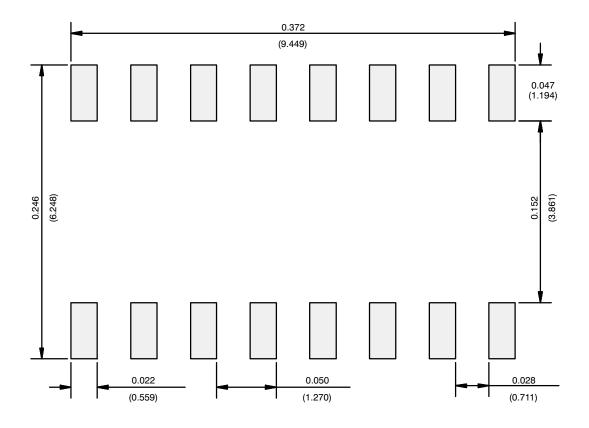

	DI	MENSIONS IN MILLIMETE	RS
Symbols	Min	Nom	Max
Α	-	1.10	1.20
A1	0.05	0.10	0.15
A2	=	1.00	1.05
В	0.22	0.28	0.38
С	=	0.127	-
D	4.90	5.00	5.10
E	6.10	6.40	6.70
E1	4.30	4.40	4.50
е	-	0.65	-
L	0.50	0.60	0.70
L1	0.90	1.00	1.10
у	=	-	0.10
θ1	0°	3°	6°
ECN: S-61920-Rev. D. 23-0	Oct-06		

DWG: 5624

Document Number: 74417 www.vishay.com 23-Oct-06


RECOMMENDED MINIMUM PAD FOR TSSOP-16

Recommended Minimum Pads Dimensions in inches (mm)


RECOMMENDED MINIMUM PADS FOR MINI QFN 16L

Revision: 05-Mar-10

RECOMMENDED MINIMUM PADS FOR SO-16

Recommended Minimum Pads Dimensions in Inches/(mm)

Return to Index

APPLICATION NOTE

Legal Disclaimer Notice

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Hyperlinks included in this datasheet may direct users to third-party websites. These links are provided as a convenience and for informational purposes only. Inclusion of these hyperlinks does not constitute an endorsement or an approval by Vishay of any of the products, services or opinions of the corporation, organization or individual associated with the third-party website. Vishay disclaims any and all liability and bears no responsibility for the accuracy, legality or content of the third-party website or for that of subsequent links.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.