

Vishay Siliconix

16-Ch/Dual 8-Ch High-Performance CMOS Analog Multiplexers

DESCRIPTION

The DG406B is a 16-channel single-ended analog multiplexer designed to connect one of sixteen inputs to a common output as determined by a 4-bit binary address. The DG407B selects one of eight differential inputs to a common differential output. Break-before-make switching action protects against momentary shorting of inputs.

An on channel conducts current equally well in both directions. In the off state each channel blocks voltages up to the power supply rails. An enable (EN) function allows the user to reset the multiplexer/demultiplexer to all switches off for stacking several devices. All control inputs, address (A_x) and enable (EN) are TTL compatible over the full specified operating temperature range.

Applications for the DG406B, DG407B include high speed data acquisition, audio signal switching and routing, ATE systems, and avionics. High performance and low power dissipation make them ideal for battery operated and remote instrumentation applications.

Designed in the 44 V silicon-gate CMOS process, the absolute maximum voltage rating is extended to 44 V, allowing operation with \pm 20 V supplies. Additionally single (12 V) supply operation is allowed. An epitaxial layer prevents latchup.

FEATURES

- Low on-resistance $R_{DS(on)}$: 45 Ω
- Low charge injection Q: 11 pC
- Fast transition time t_{TRANS}: 115 ns
- Low power: 0.2 mW
- Single supply capability
- Material categorization: For definitions of compliance please see www.vishay.com/doc?99912

Note

* This datasheet provides information about parts that are RoHS-compliant and/or parts that are non-RoHS-compliant. For example, parts with lead (Pb) terminations are not RoHS-compliant. Please see the information/tables in this datasheet for details.

BENEFITS

- Higher accuracy
- · Reduced glitching
- · Improved data throughput
- Reduced power consumption
- Increased ruggedness
- Wide supply ranges: ± 5 V to ± 20 V

APPLICATIONS

- Data acquisition systems
- Audio signal routing
- Medical instrumentation
- ATE systems
- · Battery powered systems
- High-rel systems
- · Single supply systems

FUNCTIONAL BLOCK DIAGRAM AND PIN CONFIGURATION

DG406B Dual-In-Line and SOIC Wide-Body V+ D 28 NC V-2 NC 26 S_8 S_{16} S₇ 25 S₁₅ Sa 24 S_{14} 6 23 S₁₃ S_4 S_{12} S_3 8 21 S₁₁ 20 S₁₀ 10 19 S₁ S_9 FΝ 18 GND A_0 Decoders/Drivers 17 NC 16 A_3

Top View

DG407B Dual-In-Line and SOIC Wide-Body

Document Number: 72552

FUNCTIONAL BLOCK DIAGRAM AND PIN CONFIGURATION

TRUT	TRUTH TABLE (DG406B)						
A ₃	A ₂	A ₁	A ₀	EN	ON SWITCH		
Х	Х	Х	Х	0	None		
0	0	0	0	1	1		
0	0	0	1	1	2		
0	0	1	0	1	3		
0	0	1	1	1	4		
0	1	0	0	1	5		
0	1	0	1	1	6		
0	1	1	0	1	7		
0	1	1	1	1	8		
1	0	0	0	1	9		
1	0	0	1	1	10		
1	0	1	0	1	11		
1	0	1	1	1	12		
1	1	0	0	1	13		
1	1	0	1	1	14		
1	1	1	0	1	15		
1	1	1	1	1	16		

TRUTH	TABLE (DG407B)		
A ₂	A ₁	A_0	EN	ON SWITCH
Х	Х	Х	0	None
0	0	0	1	1
0	0	1	1	2
0	1	0	1	3
0	1	1	1	4
1	0	0	1	5
1	0	1	1	6
1	1	0	1	7
1	1	1	1	8

Notes

- Logic "0" = $V_{AL} \le 0.8 \text{ V}$
- Logic "1" = V_{AH} ≥ 2.4 V
- X = Do not care

ORDERING INFORMATION (DG406B)						
TEMP. RANGE	PACKAGE	PART NUMBER				
	28-Pin Plastic DIP	DG406BDJ, DG406BDJ-E3				
-40 °C to 85 °C	28-Pin PLCC	DG406BDN, DG406BDN-T1-E3				
	28-Pin Widebody SOIC	DG406BDW, DG406BDW-E3, DG406BDW-T1-E3				

ORDERING INFORMATION (DG407B)					
TEMP. RANGE PACKAGE PART NUMBER					
	28-Pin Plastic DIP	DG407BDJ, DG407BDJ-E3			
-40 °C to 85 °C	28-Pin PLCC	DG407BDN, DG407BDN-T1-E3			
	28-Pin Widebody SOIC	DG407BDW, DG407BDW-E3, DG407BDW-T1-E3			

Note

• -T1 indicates Tape and Reel, -E3 indicates Lead-Free and RoHS Compliant, NO -E3 indicates standard Tin/Lead finish.

ABSOLUTE MAXIMUM RATINGS						
PARAMETER		LIMIT	UNIT			
Voltages Referenced to V-	V+ to V- ^g	44				
voltages Referenced to v-	GND to V-	-25	V			
Digital Inputs ^a , V _S , V _D		(V-) - 2 to (V+) + 2 or 20 mA, whichever occurs first				
Current (any terminal)		30	mA			
Peak Current, S or D (pulsed at 1 ms	s, 10 % duty cycle max.)	100				
Storage Temperature		-65 to 150	°C			
	28-Pin Plastic DIPc	625	mW			
Power Dissipation (Package)b	28-Pin Plastic PLCC ^c	450	mW			
	28-Pin Widebody SOICf	450	mW			

Notes

- a. Signals on S_X, D_X or IN_X exceeding V+ or V- will be clamped by internal diodes. Limit forward diode current to maximum current ratings.
- b. All leads soldered or welded to PC board.
- c. Derate 8.3 mW/°C above 75 °C.
- d. Derate 16 mW/°C above 75 °C.
- e. Derate 18 mW/°C above 75 °C.
- f. Derate 6 mW/°C above 75 °C.
- g. Also applies when V- = GND.

SPECIFICATION	ONS								
PARAMETER		SYMBOL	TEST CONDITIONS UNLESS OTHERWISE SPECIFIED	TEMP.b	b TYP.c	D SUFFIX -40 °C to 85 °C		UNIT	
			V+ = 15 V, V- = -15 V			MIN.d	MAX.d		
			$V_{AL} = 0.8 \text{ V}, V_{AH} = 2.4 \text{ V}^{f}$			IVIIIN."	IVIAA."		
Analog Switch									
Analog Signal Rang	ge ^e	V _{ANALOG}		Full	-	-15	15	٧	
Drain-Source		D	$V_D = \pm 10 \text{ V}, I_S = -10 \text{ mA}$	Room	45	ı	60	Ω	
On-Resistance		R _{DS(on)}	sequence each switch on	Full	45	1	74	52	
R _{DS(on)} Matching Both	etween	$\Delta R_{DS(on)}$	V _D = ± 10 V	Room	5	-	-	%	
C O#	- O	I _{S(off)}	$V_S = \pm 10 \text{ V},$ $V_D = \pm 10 \text{ V}, V_{EN} = 0 \text{ V}$	Room	-	-0.5	0.5	-	
Source Off Leakage	e Current			Full	-	-5	5		
2010				Room	-	-1	1		
Drain Off Leakage	DG406B	la	$V_D = \pm 10 \text{ V},$ $V_S = \pm 10 \text{ V},$ $V_{EN} = 0 \text{ V}$	Full	-	-40	40	nA	
Current	DG407B	I _{D(off)}		Room	-	-1	1		
	DG407B			Full	-	-20	20		
	DC 400D	DG406B	$V_{S} = V_{D} = \pm 10 \text{ V}$	Room	-	-1	1		
Drain On Leakage	DG406B			Full	-	-40	40		
Current	DG407B	I _{D(on)}	sequence each switch on	Room	-	-1	1		
	DG407B			Full	-	-20	20		
Digital Control									
Logic High Input Vo	oltage	V _{INH}		Full	-	2.4	-	V	
Logic Low Input Voltage		V _{INL}		Full	-	-	0.8	V	
Logic High Input C	urrent	I _{AH}	V _A = 2.4 V, 15 V	Full	-	-1	1		
Logic Low Input Cu	urrent	I _{AL}	$V_{EN} = 0 \text{ V}, 2.4 \text{ V}, V_{A} = 0 \text{ V}$	Full	-	-1	1	μA	
Logic Input Capaci	tance	C _{in}	f = 1 MHz	Room	6	-	-	pF	

www.vishay.com

Vishay Siliconix

SPECIFICATI	ONS							
PARAMETER		SYMBOL	TEST CONDITIONS UNLESS OTHERWISE SPECIFIED TEMP. ^b		TEMP.b TYP.c	D SUFFIX -40 °C to 85 °C		UNIT
			V+ = 15 V, V- = -15 V			MIN.d	MAX.d	
			$V_{AL} = 0.8 \text{ V}, V_{AH} = 2.4 \text{ V}^{f}$			IVIII V.	WIAA	
Dynamic Charact	eristics							
Transition Time		t _{TRANS}	see figure 2	Room	115	-	148	
Transition Time		TRANS	See figure 2	Full	-	-	161	
Break-Before-Mak	e Interval	t _{OPEN}	see figure 4	Room	39	10	-	
Dieak-Deloie-Mak	e iiitei vai	OPEN	see ligure 4	Full	-	21	-	ns
Enable Turn-On Tir	mo	+		Room	75	-	107	115
Lilable fulli-Off fil	iie	t _{ON(EN)}	see figure 3	Full	-	-	123	
Enable Turn-Off Ti	ma	+	see ligure s	Room	50	-	88]
Enable rum-On m	He	t _{OFF(EN)}		Full	-	-	94	
Charge Injection		Q	$C_L = 1 \text{ nF}, V_S = 0 \text{ V}$ $R_S = 0 \Omega$	Room	11	-	-	рС
Off Isolationh	Off Isolation ^h		$V_{EN} = 0 \text{ V}, \text{ R}_{L} = 50 \Omega,$ f = 1 MHz	Room	-86	-	-	dB
Source Off Capaci	tance	C _{S(off)}	$V_{EN} = 0 \text{ V}, V_{S} = 0 \text{ V},$ $f = 1 \text{ MHz}$	Room	6	-	-	
Drain Off				Room	108	-	-	pF
Capacitance	DG407B	C _{D(off)}	$V_{EN} = 0 V$	Room	54	-	-	
Drain On	DG406B	_	$V_D = 0 V$, $f = 1 MHz$	Room	114	-	-	
Capacitance	DG407B	C _{D(on)}	1 - 1 141112	Room	57	-	-	
Power Supplies	l .	L						
D 0				Room	23	-	30	
Positive Supply Cu	irrent	I+	., ,, ,, ,,,	Full	-	-	75	
			$V_{EN} = V_A = 0 \text{ V or 5 V}$	Room	-0.02	-1	-	- - μA
Negative Supply C	urrent	I-		Full	-	-10	-	
				Room	28	-	500	
Positive Supply Cu	ırrent	l+	., .,,,,	Full	_	_	700	
			$V_{EN} = 2.4 \text{ V}, V_A = 0 \text{ V}$	Room	-0.01	-20	_	
Negative Supply C	urrent	I-		Full	-	-20	-	1

Notes

- a. Guaranteed by \pm 15 V leakage test, not production tested.
- b. Room = 25 °C, Full = as determined by the operating temperature suffix.
- c. Typical values are for DESIGN AID ONLY, not guaranteed nor subject to production testing.
- d. The algebraic convention whereby the most negative value is a minimum and the most positive a maximum, is used in this datasheet.
- e. Guaranteed by design, not subject to production test.
- f. V_{IN} = input voltage to perform proper function.
- g. $\Delta R_{DS(on)} = R_{DS(on)} \text{ max.} R_{DS(on)} \text{ min.}$
- h. Worst case isolation occurs on channel 4 due to proximity to the drain pin.

Vishay Siliconix

PARAMETER		SYMBOL	TEST CONDITIONS UNLESS OTHERWISE SPECIFIED	TEMP.b	TYP.°	D SUFFIX -40 °C to 85 °C		UNIT	
			V+ = 15 V, V- = -15 V			MIN.d	MAX.d		
			$V_{AL} = 0.8 \text{ V}, V_{AH} = 2.4 \text{ V}^{f}$						
Analog Switch		T			, ,				
Analog Signal Rang	ge ^e	V _{ANALOG}		Full	-	0	12	V	
Drain-Source On-R	lesistance	R _{DS(on)}	\/ 0\/ 1 m \	Room	78	-	100	Ω	
R _{DS(on)} Matching Bo Channels ^g	etween	$\Delta R_{DS(on)}$	$V_D = 3 \text{ V, I}_S = -1 \text{ mA}$ sequence each switch on	Room	5	=	-	%	
Source Off Leakage	e Current ^a	I _{S(off)}	$V_D = 10 \text{ V or } 0.5 \text{ V},$	Room	-	-0.5	0.5		
Drain Off Leakage DG406B			$V_S = 0.5 \text{ V or } 10 \text{ V},$	Room	-	-1	1		
Current	DG407B	I _{D(off)}	$V_{EN} = 0 V$	Room	-	-1	1	nA	
Drain On Leakage	DG406B		$V_{S} = V_{D} = \pm 10 \text{ V}$	Room	-	-1	1		
Current DG407B		I _{D(on)}	sequence each switch on	Room	-	-1	1		
Dynamic Characte	eristics		•						
Transition Time		t _{TRANS}	$V_{S1} = 8 \text{ V}, V_{S8} = 0 \text{ V},$ $V_{IN} = 2.4 \text{ V}$	Room	130	-	163		
Enable Turn-On Tin	ne	t _{ON(EN)}	$V_{INH} = 2.4 \text{ V}, V_{INL} = 0 \text{ V},$	Room	93	-	125	ns	
Enable Turn-Off Tir	ne	t _{OFF(EN)}	$V_{IN} = 5 \text{ V}$	Room	63	-	94		
Charge Injection		Q	$C_L = 1 \text{ nF, } V_S = 6 \text{ V}$ $R_S = 0 \Omega$	Room	9	=	-	рС	
Power Supplies									
Desitive Course C		1.		Room	13	-	30		
Positive Supply Cu	rrent	I+	V _{EN} = 0 V or 5 V	Full	-	-	75		
Docitive Cumply Cu	wordt.	1.	$V_A = 0 \text{ V or 5 V}$	Room	-0.01	-20	-	μA	
Positive Supply Cu	rrent	l+	Ī	Full	_	-20	_		

Notes

- a. Guaranteed by \pm 15 V leakage test, not production tested.
- b. Room = 25 $^{\circ}$ C, Full = as determined by the operating temperature suffix.
- c. Typical values are for DESIGN AID ONLY, not guaranteed nor subject to production testing.
- d. The algebraic convention whereby the most negative value is a minimum and the most positive a maximum, is used in this datasheet.
- e. Guaranteed by design, not subject to production test.
- f. V_{IN} = input voltage to perform proper function.
- g. $\Delta R_{DS(on)} = R_{DS(on)} \text{ max.} R_{DS(on)} \text{ min.}$
- h. Worst case isolation occurs on channel 4 due to proximity to the drain pin.

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

TYPICAL CHARACTERISTICS (T_A = 25 °C, unless otherwise noted)

On-Resistance vs. V_D and Dual Supply Voltage

On-Resistance vs. V_D and Temperature

Leakage vs. Analog Voltage

On-Resistance vs. V_D and Unipolar Supply Voltage

On-Resistance vs. V_{D} and Temperature

Leakage vs. Current

TYPICAL CHARACTERISTICS (T_A = 25 °C, unless otherwise noted)

Supply Current vs. Input Switching Frequency

Switching Time vs. Single Supplies

Insertion Loss, Off -Isolation Crosstalk vs. Frequency

Switching Time vs. Bipolar Supplies

Switching Threshold vs. Supply Voltage

Charge Injection vs. Analog Voltage

TYPICAL CHARACTERISTICS (T_A = 25 °C, unless otherwise noted)

Switching Time vs. Temperature

SCHEMATIC DIAGRAM (Typical Channel)

Fig. 1

TEST CIRCUITS

Fig. 2 - Transition Time

Fig. 3 - Enable Switching Time

TEST CIRCUITS

Fig. 4 - Break-Before-Make Interval

Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and reliability data, see www.vishay.com/ppg272552.

PDIP: 28-LEAD

	MILLIN	IETERS	INC	HES
Dim	Min	Max	Min	Max
A	2.29	5.08	0.090	0.200
A ₁	0.39	1.77	0.015	0.070
В	0.38	0.56	0.015	0.022
B ₁	0.89	1.65	0.035	0.065
С	0.204	0.30	0.008	0.012
D	35.10	39.70	1.380	1.565
E	15.24	15.88	0.600	0.625
E ₁	13.21	14.73	0.520	0.580
e ₁	2.29	2.79	0.090	0.110
eA	14.99	15.49	0.590	0.610
L	2.60	5.08	0.100	0.200
Q ₁	0.95	2.345	0.0375	0.0925
S	0.995	2.665	0.0375	0.105
FCN: S-0	3946—Rev F	09-Jul-01		

DWG: 5488

Document Number: 71243 www.vishay.com 06-Jul-01

Vishay Siliconix

PLCC: 28-LEAD

DIM.	MILLIN	METERS	INCHES		
Dilvi.	MIN. MAX.		MIN.	MAX.	
Α	4.20	4.57	0.165	0.180	
A ₁	2.29	3.04	0.090	0.120	
A ₂	0.51	-	0.020	-	
В	0.331	0.553	0.013	0.021	
B ₁	0.661	0.812	0.026	0.032	
D	12.32	12.57	0.485	0.495	
D ₁	11.430	11.582	0.450	0.456	
D_2	9.91	10.92	0.390	0.430	
e ₁	1.27	BSC	0.050	BSC	
ECNI: TOO	OZEE DOV D	20 Can 00			

ECN: T09-0766-Rev. D, 28-Sep-09 DWG: 5491

Document Number: 71264 www.vishay.com 28-Sep-09

SOIC (WIDE-BODY): 28-LEADS

All Dimensions In Inches

ECN: E11-2209-Rev. D, 01-Aug-11

DWG: 5850

Legal Disclaimer Notice

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

© 2017 VISHAY INTERTECHNOLOGY, INC. ALL RIGHTS RESERVED