DG417LE, DG418LE, DG419LE

6Ω On-Resistance, +12 V, ± 5 V, +5 V, +3 V, SPST and SPDT Switches

DESCRIPTION

DG417LE, DG418LE, DG419LE analog switches are designed to operate from +3 V to +16 V single supply or $\pm 3 \mathrm{~V}$ to $\pm 8 \mathrm{~V}$ dual supply and are fully specified at +12 V , $\pm 5 \mathrm{~V},+5 \mathrm{~V}$, and +3 V .
The DG417LE, DG418LE, DG419LE are lower voltage pin-for-pin compatible companion devices to the industry standard DG417, DG418, and DG419. Each switch conducts equally well in both directions when on, blocks input voltages up to the supply level when off, and exhibits break before switching action.
Fabricated with advanced CMOS technology, the parts provide low on resistance and fast switching speed with low power dissipation.
The DG417LE, DG418LE, DG419LE operating temperature range is $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ and devices are available in 8 lead TSSOP and SOIC packages.

FEATURES

- +3 V to +16 V single supply, or $\pm 3 \mathrm{~V}$ to $\pm 8 \mathrm{~V}$ dual supply
- On resistance: 6Ω for DG417LE, DG418LE 11Ω for DG419LE

RoHS*
Available

- Fast switching speeds: $\mathrm{t}_{\mathrm{ON}}=20 \mathrm{~ns}, \mathrm{t}_{\mathrm{OFF}}=15 \mathrm{~ns}$
- Break-before-make switching for DG419LE
- Fully specified at $+12 \mathrm{~V}, \pm 5 \mathrm{~V},+5 \mathrm{~V}$, and +3 V
- V+ to V - analog signal range
- CMOS / TTL compatible
- Control logic input can be over V+
- 8 pin TSSOP and 8 pin SOIC packages
- Material categorization: for definitions of compliance please see www.vishay.com/doc?99912

Note

* This datasheet provides information about parts that are RoHS-compliant and / or parts that are non RoHS-compliant. For example, parts with lead (Pb) terminations are not RoHS-compliant. Please see the information / tables in this datasheet for details

APPLICATIONS

- Data acquisition systems
- Medical instruments
- Precision instruments
- Communications systems
- Automated test equipment
- Sample and hold circuit
- Audio and video signal routing

FUNCTIONAL BLOCK DIAGRAM AND PIN CONFIGURATION

TRUTH TABLE (DG417LE, DG418LE)		
LOGIC	DG417LE	DG418LE
0	On	Off
1	Off	On
ORDERING INFORMATION (DG417LE, DG418LE)		
TEMP. RANGE	PACKAGE	PART NUMBER
$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8-pin narrow SOIC	DG417LEDY-T1-GE4
		DG418LEDY-T1-GE4
	8-pin MSOP	DG417LEDQ-T1-GE3
		DG418LEDQ-T1-GE3

TRUTH TABLE (DG419LE)		
LOGIC	NC	NO
0	On	Off
1	Off	On

ORDERING INFORMATION (DG419LE)		
TEMP. RANGE	PACKAGE	PART NUMBER
$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8-pin narrow SOIC	DG419LEDY-T1-GE4
	8-pin MSOP	DG419LEDQ-T1-GE3

DG417LE, DG418LE, DG419LE

ABSOLUTE MAXIMUM RATINGS			
PARAMETER		LIMIT	UNIT
$\mathrm{V}+$, V_{L}, IN reference to V -		-0.3 to 18	V
V + reference to GND		-0.3 to 18	
GND reference to V-		-0.3 to 18	
COM, NC, NO reference to V- a		$-0.3 \text { to }(V++0.3)$ or 30 mA , whichever occurs first	
Continuous current (any terminal) Peak current, S or D (pulsed $1 \mathrm{~ms}, 10 \%$ duty cycle)		30	mA
		100	
Storage temperature	(DQ, DY suffix)	-65 to +150	${ }^{\circ} \mathrm{C}$
Power dissipation (packages) ${ }^{\text {b }}$	8-pin MSOP c	320	mW
	8 -pin SOIC ${ }^{\text {c }}$	400	
ESD / HBM	JS-001	2000	V
ESD / CDM	JS-002	2000	
Latch up	JESD78	300	mA

Notes

a. Signals on NC, NO, or COM exceeding V+ or V- will be clamped by internal diodes. Limit forward diode current to maximum current ratings
b. All leads welded or soldered to PC board
c. Derate $6.5 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $25^{\circ} \mathrm{C}$

[^0]DG417LE, DG418LE, DG419LE

SPECIFICATIONS (Single supply 12 V)							
PARAMETER	SYMBOL	TEST CONDITIONS UNLESS OTHERWISE SPECIFIED$\mathrm{V}_{+}=12 \mathrm{~V}, \mathrm{~V}-=0 \mathrm{~V}$$\mathrm{V}_{\mathrm{L}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=2.4 \mathrm{~V}, 0.8 \mathrm{~V}^{f}$	TEMP. ${ }^{\text {b }}$	TYP. ${ }^{\text {c }}$	D SUFFIX LIMITS $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		UNIT
					MIN. ${ }^{\text {d }}$	MAX. ${ }^{\text {d }}$	
Analog Switch							
Analog signal range ${ }^{\text {e }}$	$\mathrm{V}_{\text {ANALOG }}$		Full	-	0	12	V
Drain-source on-resistance	$\mathrm{R}_{\mathrm{DS} \text { (on) }}$	$\begin{gathered} \mathrm{V}+=10.8 \mathrm{~V}, \mathrm{~V}-=0 \mathrm{~V} \\ \mathrm{I}_{\mathrm{NO}}, \mathrm{I}_{\mathrm{NC}}=5 \mathrm{~mA}, \mathrm{~V} \text { CoM }=2 \mathrm{~V} / 9 \mathrm{~V}, \\ \mathrm{DG} 417 \mathrm{LE}, \mathrm{DG} 418 \mathrm{LE} \text { only } \end{gathered}$	Room	6	-	7	Ω
			Full	-	-	9	
		$\begin{gathered} \mathrm{V}+=10.8 \mathrm{~V}, \mathrm{~V}-=0 \mathrm{~V} \\ \mathrm{I}_{\mathrm{NO}}, \mathrm{I}_{\mathrm{NC}}=5 \mathrm{~mA}, \mathrm{~V} \mathrm{COM}=2 \mathrm{~V} / 9 \mathrm{~V}, \\ \mathrm{DG} 419 \mathrm{LE} \text { only } \end{gathered}$	Room	11	-	14	
			Full	-	-	18	
Switch off leakage current	$\mathrm{I}_{\mathrm{NO} \text { (off) }}$ ${ }^{\mathrm{NC} \text { (off) }}$	$\begin{gathered} \mathrm{V}_{\mathrm{COM}}=1 \mathrm{~V} / 11 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{NO}}, \mathrm{~V}_{\mathrm{NC}}=11 \mathrm{~V} / 1 \mathrm{~V} \end{gathered}$	Room	± 0.002	-2	2	nA
			Full	-	-10	10	
	Iсом(off)		Room	± 0.003	-2	2	
			Full	-	-10	10	
Switch on leakage current	$\mathrm{I}_{\text {Com(on) }}$	$\mathrm{V}_{\mathrm{NO}}, \mathrm{V}_{\mathrm{NC}}=\mathrm{V}_{\mathrm{COM}}=11 \mathrm{~V} / 1 \mathrm{~V}$	Room	± 0.006	-2	2	
			Full	-	-10	10	
Digital Control							
Input current	$\mathrm{l}_{\text {INL }}$ or l_{NH}		Full	0.02	-1	1	$\mu \mathrm{A}$
Dynamic Characteristics							
Turn-on time	t_{ON}	$\begin{gathered} \mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} \\ \mathrm{~V}_{\mathrm{NO}}, \mathrm{~V}_{\mathrm{NC}}=5 \mathrm{~V} \end{gathered}$	Room	20	-	38	ns
			Full	-	-	40	
Turn-off time	toff		Room	15	-	32	
			Full	-	-	35	
Break-before-make time	$t_{\text {BBM }}$	$\begin{gathered} \text { DG419LE only, } \mathrm{V}_{\mathrm{NC}}, \mathrm{~V}_{\mathrm{NO}}=5 \mathrm{~V} \\ \mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} \end{gathered}$	Room	7	-	-	
Charge injection ${ }^{\text {e }}$	$\mathrm{Q}_{\text {INJ }}$	$\mathrm{V}_{\mathrm{GEN}}=0 \mathrm{~V}, \mathrm{R}_{\mathrm{GEN}}=0 \Omega, \mathrm{C}_{\mathrm{L}}=1 \mathrm{nF}$	Room	26	-	-	pC
Off-isolation ${ }^{\text {e }}$	OIRR	$\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=1 \mathrm{MHz}$	Room	-68	-	-	dB
Channel-to-channel crosstalk ${ }^{\text {e }}$	$\mathrm{X}_{\text {TALK }}$		Room	-72	-	-	
Source off capacitance ${ }^{e}$	$\mathrm{C}_{\mathrm{NO} \text { (off) }}$ $\mathrm{C}_{\mathrm{NC} \text { (off) }}$	$\mathrm{V}_{\mathbb{I N}}=0 \mathrm{~V} \text { or } \mathrm{V}+, \mathrm{f}=1 \mathrm{MHz} \text {, }$ DG417LE,DG418LE only	Room	11	-	-	pF
Drain-on capacitance ${ }^{\text {e }}$	$\mathrm{Con}^{\text {N }}$		Room	32	-	-	
Source off capacitance ${ }^{\text {e }}$	$\mathrm{C}_{\mathrm{NO} \text { (off) }}$ $\mathrm{C}_{\mathrm{NC} \text { (off) }}$	$\begin{gathered} \mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V} \text { or } \mathrm{V}+, \mathrm{f}=1 \mathrm{MHz}, \\ \mathrm{DG419LE} \text { only } \end{gathered}$	Room	6	-	-	
Drain-on capacitance ${ }^{\text {e }}$	$\mathrm{Con}^{\text {N }}$		Room	20	-	-	
Power Supplies							
Positive supply current	$1+$	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$ or V_{L}	Room	0.00009	-	1	$\mu \mathrm{A}$
			Full	-	-	5	
Negative supply current	I-		Room	-0.00009	-1	-	
			Full	-	-5	-	
Logic supply current	I		Room	0.00002	-	1	
			Full	-	-	5	
Ground current	$\mathrm{I}_{\text {GND }}$		Room	-0.00002	-1	-	
			Full	-	-5	-	

SPECIFICATIONS (Dual supply $\pm 5 \mathrm{~V}$)							
PARAMETER	SYMBOL	TEST CONDITIONS UNLESS OTHERWISE SPECIFIED$\mathrm{V}+=5 \mathrm{~V}, \mathrm{~V}-=-5 \mathrm{~V}$$\mathrm{V}_{\mathrm{L}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=2.4 \mathrm{~V}, 0.8 \mathrm{~V}^{\mathrm{f}}$	TEMP. ${ }^{\text {b }}$	TYP. ${ }^{\text {c }}$	D SUFFIX LIMITS $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		UNIT
					MIN. ${ }^{\text {d }}$	MAX. ${ }^{\text {d }}$	
Analog Switch							
Analog signal range ${ }^{\text {e }}$	$\mathrm{V}_{\text {ANALOG }}$		Full	-	-5	5	V
Drain-source on-resistance	$\mathrm{R}_{\mathrm{DS} \text { (on) }}$	$\begin{gathered} \mathrm{V}+=5 \mathrm{~V}, \mathrm{~V}-=-5 \mathrm{~V} \\ \mathrm{I}_{\mathrm{NO}}, \mathrm{I}_{\mathrm{NC}}=5 \mathrm{~mA}, \mathrm{~V}_{\mathrm{COM}}= \pm 3.5 \mathrm{~V} \\ \mathrm{DG} 417 \mathrm{LE} / \mathrm{DG} 418 \mathrm{LE} \text { only } \\ \hline \end{gathered}$	Room	6	-	8	Ω
			Full	-	-	10	
		$\begin{gathered} \mathrm{V}+=5 \mathrm{~V}, \mathrm{~V}-=-5 \mathrm{~V} \\ \mathrm{I}_{\mathrm{NO}}, \mathrm{I}_{\mathrm{NC}}=5 \mathrm{~mA}, \mathrm{~V}_{\mathrm{COM}}= \pm 3.5 \mathrm{~V} \\ \text { DG419LE only } \end{gathered}$	Room	12	-	15	
			Full	-	-	21	
Switch off leakage current ${ }^{\text {a }}$	$\mathrm{I}_{\mathrm{NO} \text { (off) }}$ $\mathrm{I}_{\mathrm{NC} \text { (off) }}$	$\begin{gathered} \mathrm{V}_{+}=5.5 \mathrm{~V}, \mathrm{~V}-=-5.5 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{COM}}= \pm 4.5 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{NO}}, \mathrm{~V}_{\mathrm{NC}}= \pm 4.5 \mathrm{~V} \end{gathered}$	Room	± 0.001	-2	2	nA
			Full	-	-10	10	
	$\mathrm{I}_{\text {com(off) }}$		Room	± 0.002	-2	2	
			Full	-	-10	10	
Channel on leakage current ${ }^{\text {a }}$	ICOM(on)	$\begin{gathered} \mathrm{V}_{+}=5.5 \mathrm{~V}, \mathrm{~V}-=-5.5 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{NO}}, \mathrm{~V}_{\mathrm{NC}}=\mathrm{V}_{\mathrm{COM}}= \pm 4.5 \mathrm{~V} \end{gathered}$	Room	± 0.003	-2	2	
			Full	-	-10	10	
Digital Control							
Input current ${ }^{\text {a }}$	$\mathrm{I}_{\text {INL }}$ or $\mathrm{l}_{\text {INH }}$		Full	0.02	-1	1	$\mu \mathrm{A}$
Dynamic Characteristics							
Turn-on time ${ }^{\text {e }}$	ton	$\begin{gathered} \mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} \\ \mathrm{~V}_{\mathrm{NO}}, \mathrm{~V}_{\mathrm{NC}}= \pm 3.5 \mathrm{~V} \end{gathered}$	Room	21	-	38	ns
			Full	-	-	40	
Turn-off time ${ }^{\text {e }}$	toff		Room	20	-	45	
			Full	-	-	50	
Break-before-make time ${ }^{\text {e }}$	$t_{\text {BBM }}$	$\begin{gathered} \text { DG419LE only, } \mathrm{V}_{\mathrm{NO}}, \mathrm{~V}_{\mathrm{NC}}=3.5 \mathrm{~V} \\ \mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} \end{gathered}$	Room	7	-	-	
Transition time	${ }^{\text {t }}$ RANS	$\begin{gathered} \mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} \\ \mathrm{~V}_{\mathrm{S} 1}= \pm 3.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{S} 2}= \pm 3.5 \mathrm{~V} \end{gathered}$	Room	21	-	-	
Charge injection ${ }^{\text {e }}$	$\mathrm{Q}_{\text {INJ }}$	$\mathrm{V}_{\mathrm{GEN}}=0 \mathrm{~V}, \mathrm{R}_{\mathrm{GEN}}=0 \Omega, \mathrm{C}_{\mathrm{L}}=1 \mathrm{nF}$	Room	-17	-	-	pC
Off-isolation ${ }^{\text {e }}$	OIRR	$\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=1 \mathrm{MHz}$	Room	-69	-	-	dB
Channel-to-channel crosstalk ${ }^{\text {e }}$	$\mathrm{X}_{\text {TALK }}$		Room	-73	-	-	
Source off capacitance ${ }^{\text {e }}$	$\mathrm{C}_{\mathrm{NO} \text { (off) }}$ $\mathrm{C}_{\mathrm{NC} \text { (off) }}$	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V} \text { or } \mathrm{V}+, \mathrm{f}=1 \mathrm{MHz}$ DG417LE / DG418LE only	Room	11	-	-	pF
Drain-on capacitance ${ }^{\text {e }}$	$\mathrm{Con}^{\text {N }}$		Room	33	-	-	
Source off capacitance ${ }^{\text {e }}$	$\mathrm{C}_{\mathrm{NO} \text { (off) }}$ $\mathrm{C}_{\mathrm{NC} \text { (off) }}$	$\begin{gathered} \mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V} \text { or } \mathrm{V}+, \mathrm{f}=1 \mathrm{MHz} \\ \text { DG419LE only } \end{gathered}$	Room	6	-	-	
Drain-on capacitance ${ }^{\text {e }}$	$\mathrm{Con}^{\text {a }}$		Room	20	-	-	
Power Supplies							
Positive supply current ${ }^{\text {e }}$	I+	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$ or V_{L}	Room	0.00007	-	1	$\mu \mathrm{A}$
			Full	-	-	5	
Negative supply current ${ }^{\text {e }}$	I-		Room	-0.00009	-1	-	
			Full	-	-5	-	
Logic supply current ${ }^{\text {e }}$	I_{L}		Room	0.00002	-	1	
			Full	-	-	5	
Ground current ${ }^{\text {e }}$	$\mathrm{I}_{\text {GND }}$		Room	-0.00003	-1	-	
			Full	-	-5	-	

DG417LE, DG418LE, DG419LE
www.vishay.com
Vishay Siliconix

SPECIFICATIONS (Single supply 5 V)							
PARAMETER	SYMBOL	TEST CONDITIONS UNLESS OTHERWISE SPECIFIED$\begin{gathered} \mathrm{V}+=5 \mathrm{~V}, \mathrm{~V}-=0 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{L}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=2.4 \mathrm{~V}, 0.8 \mathrm{~V} \end{gathered}$	TEMP. ${ }^{\text {b }}$	TYP. ${ }^{\text {c }}$	D SUFFIX LIMITS $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		UNIT
					MIN. ${ }^{\text {d }}$	MAX. ${ }^{\text {d }}$	
Analog Switch							
Analog signal range ${ }^{\text {e }}$	$\mathrm{V}_{\text {ANALOG }}$		Full	-	0	5	V
Drain-source on-resistance ${ }^{\text {e }}$	$\mathrm{R}_{\mathrm{DS} \text { (on) }}$	$\begin{gathered} \mathrm{V}_{+}=4.5 \mathrm{~V}, \mathrm{I}_{\mathrm{NO},}, \mathrm{I}_{\mathrm{NC}}=5 \mathrm{~mA} \\ \mathrm{~V}_{\mathrm{COM}}=1 \mathrm{~V}, 3.5 \mathrm{~V} \\ \mathrm{DG} 417 \mathrm{LE} / \mathrm{DG} 418 \mathrm{LE} \text { only } \end{gathered}$	Room	12	-	16	Ω
			Full	-	-	18	
		$\begin{gathered} \hline \mathrm{V}_{+}=4.5 \mathrm{~V}, \mathrm{I}_{\mathrm{NO}}, \mathrm{I}_{\mathrm{NC}}=5 \mathrm{~mA} \\ \mathrm{~V}_{\mathrm{COM}}=1 \mathrm{~V}, 3.5 \mathrm{~V} \\ \mathrm{DG} 419 \mathrm{LE} \text { only } \end{gathered}$	Room	24	-	35	
			Full	-	-	37	
Switch off leakage current ${ }^{\text {a }}$	$\mathrm{I}_{\mathrm{NO} \text { (off) }}$ $\mathrm{I}_{\mathrm{NC} \text { (off) }}$	$\begin{gathered} \mathrm{V}_{+}=5.5 \mathrm{~V}, \mathrm{~V}-=0 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{COM}}=1 \mathrm{~V} / 4.5 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{NO}}, \mathrm{~V}_{\mathrm{NC}}=4.5 \mathrm{~V} / 1 \mathrm{~V} \end{gathered}$	Room	± 0.002	-1	1	nA
			Full	-	-10	10	
	$\mathrm{I}_{\text {Com(off) }}$		Room	± 0.001	-1	1	
			Full	-	-10	10	
Switch on leakage current ${ }^{\text {a }}$	$\mathrm{ICOM}_{\text {(on) }}$	$\begin{gathered} \mathrm{V}_{+}=5.5 \mathrm{~V}, \mathrm{~V}-=0 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{NO}}, \mathrm{~V}_{\mathrm{NC}}=\mathrm{V}_{\mathrm{COM}}=1 \mathrm{~V} / 4.5 \mathrm{~V} \end{gathered}$	Room	± 0.003	-1	1	
			Full	-	-10	10	
Digital Control							
Input current ${ }^{\text {a }}$	$\mathrm{l}_{\mathrm{INL}}$ or $\mathrm{l}_{\text {INH }}$		Full	0.02	-1	1	$\mu \mathrm{A}$
Dynamic Characteristics							
Turn-on time ${ }^{\text {e }}$	ton	$\begin{gathered} \mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} \\ \mathrm{~V}_{\mathrm{NO}}, \mathrm{~V}_{\mathrm{NC}}=3.5 \mathrm{~V} \end{gathered}$	Room	29	-	46	ns
			Full	-	-	49	
Turn-off time ${ }^{\text {e }}$	toff		Room	16	-	28	
			Full	-	-	32	
Break-before-make time ${ }^{\text {e }}$	$t_{\text {BBM }}$	$\begin{gathered} \text { DG419LE only, } \mathrm{V}_{\mathrm{NO}}, \mathrm{~V}_{\mathrm{NC}}=3.5 \mathrm{~V} \\ \mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} \end{gathered}$	Room	16	-	-	
Charge injection ${ }^{\text {e }}$	$\mathrm{Q}_{\text {INJ }}$	$\mathrm{V}_{\mathrm{GEN}}=0 \mathrm{~V}, \mathrm{R}_{\mathrm{GEN}}=0 \Omega, \mathrm{C}_{\mathrm{L}}=1 \mathrm{nF}$	Room	10	-	-	pC
Off-isolation ${ }^{\text {e }}$	OIRR	$\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=1 \mathrm{MHz}$	Room	-68	-	-	dB
Channel-to-channel crosstalk ${ }^{\text {e }}$	$\mathrm{X}_{\text {TALK }}$		Room	-72	-	-	
Source off capacitance ${ }^{\text {e }}$	$\mathrm{C}_{\mathrm{NO} \text { (off) }}$ $\mathrm{C}_{\mathrm{NC} \text { (off) }}$	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V} \text { or } \mathrm{V}+, \mathrm{f}=1 \mathrm{MHz}$ DG417LE / DG418LE only	Room	13	-	-	pF
Drain-on capacitance ${ }^{\text {e }}$	$\mathrm{Con}^{\text {a }}$		Room	34	-	-	
Source off capacitance ${ }^{e}$	$\mathrm{C}_{\mathrm{NO} \text { (off) }}$ $\mathrm{C}_{\mathrm{NC} \text { (off) }}$	$\begin{gathered} \mathrm{V}_{\text {IN }}=0 \mathrm{~V} \text { or } \mathrm{V}+, \mathrm{f}=1 \mathrm{MHz} \\ \text { DG419LE only } \end{gathered}$	Room	7	-	-	
Drain-on capacitance ${ }^{\text {e }}$	Con		Room	22	-	-	
Power Supplies							
Positive supply current ${ }^{\text {e }}$	I+	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$ or V_{L}	Room	0.00006	-	1	$\mu \mathrm{A}$
			Full	-	-	5	
Negative supply current ${ }^{\text {e }}$	I-		Room	-0.00006	-1	-	
			Full	-	-5	-	
Logic supply current ${ }^{\text {e }}$	I_{L}		Room	0.00002	-	1	
			Full	-	-	5	
Ground current ${ }^{\text {e }}$	$I_{G N D}$		Room	-0.00002	-1	-	
			Full	-	-5	-	

SPECIFICATIONS (Single supply 3 V)							
PARAMETER	SYMBOL	TEST CONDITIONS UNLESS OTHERWISE SPECIFIED$\begin{gathered} \mathrm{V}+=3 \mathrm{~V}, \mathrm{~V}-=0 \mathrm{~V} \\ \mathrm{~V}=3 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=2 \mathrm{~V}, 0.4 \mathrm{~V} \end{gathered}$	TEMP. ${ }^{\text {b }}$	TYP. ${ }^{\text {c }}$	D SUFFIX LIMITS $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		UNIT
					MIN. ${ }^{\text {d }}$	MAX. ${ }^{\text {d }}$	
Analog Switch							
Analog signal range ${ }^{\text {e }}$	$\mathrm{V}_{\text {ANALOG }}$		Full	-	0	3	V
Drain-source on-resistance	$\mathrm{R}_{\mathrm{DS} \text { (on) }}$	$\begin{gathered} \mathrm{V}+=2.7 \mathrm{~V}, \mathrm{~V}-=0 \mathrm{~V} \\ \mathrm{I}_{\mathrm{NO}}, \mathrm{I}_{\mathrm{NC}}=5 \mathrm{~mA}, \mathrm{~V}_{\mathrm{COM}}=0.5 \mathrm{~V}, 2.2 \mathrm{~V} \end{gathered}$DG417LE / DG418LE only	Room	22	-	34	Ω
			Full	-	-	38	
		$\begin{gathered} \mathrm{V}+=2.7 \mathrm{~V}, \mathrm{~V}-=0 \mathrm{~V} \\ \mathrm{I}_{\mathrm{NO}}, \mathrm{I}_{\mathrm{NC}}=5 \mathrm{~mA}, \mathrm{~V}, \mathrm{COM}=0.5 \mathrm{~V}, 2.2 \mathrm{~V} \\ \mathrm{DG} 419 \mathrm{LE} \text { only } \end{gathered}$	Room	43	-	68	
			Full	-	-	75	
Switch off leakage current ${ }^{\text {a }}$	$\mathrm{I}_{\mathrm{NO} \text { (off) }}$ $\mathrm{I}_{\mathrm{NC} \text { (off) }}$	$\begin{gathered} \mathrm{V}_{+}=3.3 \mathrm{~V}, \mathrm{~V}-=0 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{COM}}=1 \mathrm{~V}, 2 \mathrm{~V}, \\ \mathrm{~V}_{\mathrm{NO}}, \mathrm{~V}_{\mathrm{NC}}=2 \mathrm{~V}, 1 \mathrm{~V} \end{gathered}$	Room	± 0.002	-1	1	nA
			Full	-	-10	10	
	ICOM(off)		Room	± 0.001	-1	1	
			Full	-	-10	10	
Channel on leakage current a	$\mathrm{ICOM}_{\text {(on) }}$	$\begin{gathered} \mathrm{V}_{+}=3.3 \mathrm{~V}, \mathrm{~V}-=0 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{NO}}, \mathrm{~V}_{\mathrm{NC}}=\mathrm{V}_{\mathrm{COM}}=1 \mathrm{~V}, 2 \mathrm{~V} \end{gathered}$	Room	± 0.002	-1	1	
			Full	-	-10	10	
Digital Control							
Input current ${ }^{\text {a }}$	$\mathrm{I}_{\mathrm{INL}}$ or $\mathrm{l}_{\mathrm{INH}}$		Full	0.02	-1	1	$\mu \mathrm{A}$
Dynamic Characteristics							
Turn-on time	ton	$\begin{gathered} \mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} \\ \mathrm{~V}_{\mathrm{NO}}, \mathrm{~V}_{\mathrm{NC}}=1.5 \mathrm{~V} \end{gathered}$	Room	59	-	77	ns
			Full	-	-	81	
Turn-off time	toff		Room	33	-	54	
			Full	-	-	69	
Break-before-make time ${ }^{\text {e }}$	$t_{\text {BBM }}$	$\begin{gathered} \hline \text { DG419LE only, } \mathrm{V}_{\mathrm{NO}}, \mathrm{~V}_{\mathrm{NC}}=1.5 \mathrm{~V} \\ \mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} \\ \hline \end{gathered}$	Room	31	-	-	
Charge injection ${ }^{\text {e }}$	$Q_{\text {INJ }}$	$\mathrm{V}_{\mathrm{GEN}}=0 \mathrm{~V}, \mathrm{R}_{\mathrm{GEN}}=0 \Omega, \mathrm{C}_{\mathrm{L}}=10 \mathrm{nF}$	Room	6	-	-	pC
Off-isolation ${ }^{\text {e }}$	OIRR	$\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=1 \mathrm{MHz}$	Room	-68	-	-	dB
Channel-to-channel crosstalk ${ }^{\text {e }}$	$\mathrm{X}_{\text {TALK }}$		Room	-71	-	-	
Source off capacitance ${ }^{e}$	$\mathrm{C}_{\mathrm{NO} \text { (off) }}$ $\mathrm{C}_{\mathrm{NC} \text { (off) }}$	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V} \text { or } \mathrm{V}_{+}, \mathrm{f}=1 \mathrm{MHz}$ DG417LE / DG418LE only	Room	14	-	-	pF
Channel on capacitance ${ }^{\text {e }}$	$\mathrm{C}_{\mathrm{D} \text { (on) }}$		Room	35	-	-	
Source off capacitance ${ }^{e}$	$\mathrm{C}_{\mathrm{NO} \text { (off) }}$ $\mathrm{C}_{\mathrm{NC} \text { (off) }}$	$\begin{gathered} \mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V} \text { or } \mathrm{V}+, \mathrm{f}=1 \mathrm{MHz} \\ \text { DG419LE only } \end{gathered}$	Room	8	-	-	
Channel on capacitance ${ }^{\text {e }}$	$\mathrm{C}_{\mathrm{D} \text { (on) }}$		Room	23	-	-	
Power Supplies							
Positive supply current ${ }^{\text {e }}$	I+	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$ or V_{L}	Room	0.00005	-	1	$\mu \mathrm{A}$
			Full	-	-	5	
Negative supply current ${ }^{\text {e }}$	I-		Room	-0.00007	-1	-	
			Full	-	-5	-	
Logic supply current ${ }^{\text {e }}$	I L		Room	0.00002	-	1	
			Full	-	-	5	
Ground current ${ }^{\text {e }}$	$\mathrm{I}_{\text {GND }}$		Room	-0.00002	-1	-	
			Full	-	-5	-	

Notes

a. Leakage parameters are guaranteed by worst case test condition and not subject to production test
b. Room $=25^{\circ} \mathrm{C}$, full $=$ as determined by the operating temperature suffix
c. Typical values are for DESIGN AID ONLY, not guaranteed nor subject to production testing
d. The algebraic convention whereby the most negative value is a minimum and the most positive a maximum, is used in this datasheet
e. Guaranteed by design, not subject to production test
f. $\mathrm{V}_{\mathrm{IN}}=$ input voltage to perform proper function

TYPICAL CHARACTERISTICS $\left(25^{\circ} \mathrm{C}\right.$, unless otherwise noted)

$R_{\text {DS(on) }}$ vs. $V_{\text {COM }}$ and Supply Voltage

R $_{\text {DS(on) }}$ vs. $\mathbf{V}_{\text {COM }}$ and Supply Voltage

$R_{\text {DS(on) }}$ vs. Analog Voltage and Temperature

$R_{\text {DS(on) }}$ vs. $\mathrm{V}_{\text {com }}$ and Supply Voltage

$R_{\text {DS(on) }}$ vs. $V_{\text {COM }}$ and Supply Voltage

$R_{\text {DS(on) }}$ vs. Analog Voltage and Temperature

TYPICAL CHARACTERISTICS $\left(25^{\circ} \mathrm{C}\right.$, unless otherwise noted)

$\mathbf{R}_{\text {DS(on) }}$ vs. Analog Voltage and Temperature

$\mathbf{R}_{\text {DS(on) }}$ vs. Analog Voltage and Temperature

$R_{\text {DS(on) }}$ vs. Analog Voltage and Temperature

$\mathbf{R}_{\text {DS(on) }}$ vs. Analog Voltage and Temperature

$\mathbf{R}_{\text {DS(on) }}$ vs. Analog Voltage and Temperature

$R_{\text {DS(on) }}$ vs. Analog Voltage and Temperature

TYPICAL CHARACTERISTICS $\left(25^{\circ} \mathrm{C}\right.$, unless otherwise noted)

Leakage Current vs. Temperature

Leakage Current vs. Temperature

Supply Current vs. Temperature

Leakage Current vs. Temperature

Leakage Current vs. Temperature

Insertion Loss, Off-Isolation Crosstalk vs. Frequency

TYPICAL CHARACTERISTICS $\left(25^{\circ} \mathrm{C}\right.$, unless otherwise noted)

Supply Current vs. Input Switching Frequency

Switching Time vs. Temperature

Switching Threshold vs. Dual Supply Voltage

Supply Current vs. Input Switching Frequency

Switching Time vs. Temperature

Switching Threshold vs. Single Supply Voltage

TYPICAL CHARACTERISTICS $\left(25^{\circ} \mathrm{C}\right.$, unless otherwise noted)

Charge Injection vs. Analog Voltage

Supply Current vs. Enable Input Voltage

Charge Injection vs. Analog Voltage

SCHEMATIC DIAGRAM (Typical channel)

TEST CIRCUITS

C_{L} (includes fixture and stray capacitance)

$$
\mathrm{V}_{\mathrm{OUT}}=\mathrm{V}_{\mathrm{IN}} \frac{R_{\mathrm{L}}}{R_{\mathrm{L}}+R_{\mathrm{ON}}}
$$

Note

- Logic input waveform is inverted for switches that have the opposite logic sense control

Fig. 1 - Switching Time

Fig. 2 - Break-Before-Make (DG419LE)

TEST CIRCUITS

Fig. 3 - Transition Time (DG419LE)

Fig. 4 - Charge Injection

Fig. 5 - Crosstalk (DG419LE)

TEST CIRCUITS

Fig. 6 - Off Isolation

Fig. 7 - Channel Capacitances

DG417LE, DG418LE, DG419LE

PRODUCT SUMMARY						
Part number	DG417LE	DG417LE	DG418LE	DG418LE	DG419LE	DG419LE
Status code	2	2	2	2	2	2
Configuration	SPST x 1, NC	SPST x 1, NC	SPST x 1, NO	SPST x 1, NO	SPDT $\times 1$	SPDT $\times 1$
Single supply min. (V)	3	3	3	3	3	3
Single supply max. (V)	16	16	16	16	16	16
Dual supply min. (V)	3	3	3	3	3	3
Dual supply max. (V)	8	8	8	8	8	8
On-resistance (Ω)	6	6	6	6	12	12
Charge injection (pC)	-17	-17	-17	-17	-17	-17
Source on capacitance (pF)	33	33	33	33	29	29
Source off capacitance (pF)	11	11	11	11	6	6
Leakage switch on typ. (nA)	0.003	0.003	0.003	0.003	0.003	0.003
Leakage switch off max. (nA)	2	2	2	2	2	2
-3 dB bandwidth (MHz)	-	-	-	-	-	-
Package	$\begin{aligned} & \hline \text { SO-8 (narrow) } \\ & \text { AS } \end{aligned}$	MSOP-8	$\begin{aligned} & \hline \text { SO-8 (narrow) } \\ & \text { AS } \end{aligned}$	MSOP-8	$\begin{gathered} \hline \text { SO-8 (narrow) } \\ \text { AS } \end{gathered}$	MSOP-8
Functional circuit / applications	Multi purpose, instrumentation, medical and healthcare, portable					
Interface	Parallel	Parallel	Parallel	Parallel	Parallel	Parallel
Single supply operation	Yes	Yes	Yes	Yes	Yes	Yes
Dual supply operation	Yes	Yes	Yes	Yes	Yes	Yes
Turn on time max. (ns)	38	38	38	38	38	38
Crosstalk and off isolation	-68	-68	-68	-68	-68	-68

[^1]
SOIC (NARROW): 8-LEAD

JEDEC Part Number: MS-012

DIM	MILLIMETERS		INCHES					
	Min	Max	Min	Max				
A	1.35	1.75	0.053	0.069				
$\mathrm{~A}_{1}$	0.10	0.20	0.004	0.008				
B	0.35	0.51	0.014	0.020				
C	0.19	0.25	0.0075	0.010				
D	4.80	5.00	0.189	0.196				
E	3.80	4.00	0.150	0.157				
e	1.27 BSC						0.050 BSC	
H	5.80	6.20	0.228	0.244				
h	0.25	0.50	0.010	0.020				
L	0.50	0.93	0.020	0.037				
q	0°	8°	$0{ }^{\circ}$	8°				
S	0.44	0.64	0.018	0.026				
ECN: C-06527-Rev. I, 11-Sep-06 DWG: 5498								

MSOP: 8-LEADS

JEDEC Part Number: MO-187, (Variation AA and BA)

NOTES:

1. Die thickness allowable is 0.203 ± 0.0127.
2. Dimensioning and tolerances per ANSI.Y14.5M-1994.
3.

Dimensions " D " and " E_{1} " do not include mold flash or protrusions, and are measured at Datum plane $-\mathrm{H}^{-}$, mold flash or protrusions shall not exceed 0.15 mm per side.

Dimension is the length of terminal for soldering to a substrate
Terminal positions are shown for reference only.
Formed leads shall be planar with respect to one another within 0.10 mm at seating plane.

The lead width dimension does not include Dambar protrusion. Allowable Dambar protrusion shall be 0.08 mm total in excess of the lead width dimension at maximum material condition. Dambar cannot be located on the lower radius or the lead foot. Minimum space between protrusions and an adjacent lead to be 0.14 mm . See detail "B" and Section "C-C".
8. Section "C-C" to be determined at 0.10 mm to 0.25 mm from the lead tip.
9. Controlling dimension: millimeters
10. This part is compliant with JEDEC registration MO-187, variation AA and BA.
11. Datums $-\mathrm{A}-\mathrm{a}$ and $-\mathrm{B}-\mathrm{t}$ to be determined Datum plane $-\mathrm{H}-$.

Exposed pad area in bottom side is the same as teh leadframe pad size.

Detail "B" (Scale: 30/1) Dambar Protrusion

End View
$\mathbf{N}=\mathbf{8 L}$

Dim	MILLIMETERS			Note
	Min	Nom	Max	
A	-	-	1.10	
A_{1}	0.05	0.10	0.15	
A_{2}	0.75	0.85	0.95	
b	0.25	-	0.38	8
b_{1}	0.25	0.30	0.33	8
c	0.13	-	0.23	
C_{1}	0.13	0.15	0.18	
D	3.00 BSC			3
E	4.90 BSC			
E_{1}	2.90	3.00	3.10	3
e	0.65 BSC			
e_{1}	1.95 BSC			
L	0.40	0.55	0.70	4
N	8			5
\propto	0°	4°	6°	
ECN: T-02080—Rev. C, 15-Jul-02 DWG: 5867				

Vishay Siliconix

RECOMMENDED MINIMUM PADS FOR SO-8

Return to Index

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Hyperlinks included in this datasheet may direct users to third-party websites. These links are provided as a convenience and for informational purposes only. Inclusion of these hyperlinks does not constitute an endorsement or an approval by Vishay of any of the products, services or opinions of the corporation, organization or individual associated with the third-party website. Vishay disclaims any and all liability and bears no responsibility for the accuracy, legality or content of the third-party website or for that of subsequent links.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

[^0]: Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

[^1]: Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package / tape drawings, part marking, and reliability data, see www.vishay.com/ppg?76432.

