

> 500 MHz, - 3 dB Bandwidth; Dual SPDT Analog Switch

DESCRIPTION

DG2721 is a low R_{on} , high bandwidth analog switch configured in dual SPDT.

It achieves 5.7 Ω switch on resistance, greater than 500 MHz - 3 dB bandwidth with 5 pF load, and a channel to channel crosstalk and Isolation at - 49 dB.

Fabricated with high density sub micro CMOS process, the DG2721 provides low parasitic capacitance, handles bidirectional signal flow with minimized phase distortion. Guaranteed 1.3 V logic high threshold makes it possible to interface directly with low voltage MCUs.

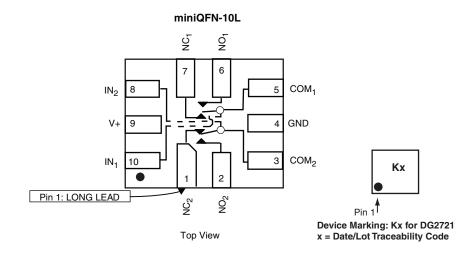
The DG2721 is designed for a wide range of operating voltages from 2.7 V to 4.3 V that can be driven directly from one cell Li-ion battery. On-chip protection circuit protects again fault events when signals at "com" pins goes beyond V+.

Latch up current is greater than 300 mA, as per JESD78, and its ESD tolerance exceeds 8 kV.

Packaged in ultra small miniQFN-10 (1.4 mm \times 1.8 mm \times 0.55 mm), it is ideal for portable high speed mix signal switching application.

As a committed partner to the community and the environment, Vishay Siliconix manufactures this product with lead (Pb)-free device termination. The miniQFN-10 package has a nickel-palladium-gold device termination and is represented by the lead (Pb)-free "-E4" suffix to the ordering part number. The nickel-palladium-gold device terminations meet all JEDEC standards for reflow and MSL rating.

As a further sign of Vishay Siliconix's commitment, the DG2721 is fully RoHS complaint.


FEATURES

- Wide operation voltage range
- Low on-resistance, 5.7 Ω (typical at 3 V)
- Low capacitance, 5.6 pF (typical)
- 3 dB high bandwidth with 5 pF load:
 > 500 MHz (typical)
- · Low bit to bit skew: 40 pS (typical)
- Low power consumption
- · Low logic threshold: V
- Power down protection: COM₁ and COM₂ pins can tolerate up to 5 V when V+ = 0 V
- Logic (IN₁ and IN₂) above V+ tolerance
- Latch-up current greater than 300 mA per JESD78
- 8 kV ESD protection (HBM)
- Lead (Pb)-free low profile miniQFN-10 (1.4 mm x 1.8 mm x 0.55 mm)

APPLICATIONS

- Cellular phones
- · Portable media players
- PDA
- Digital camera
- GPS
- Notebook computer
- TV, monitor, and set top box
- Radio

FUNCTIONAL BLOCK DIAGRAM AND PIN CONFIGURATION

Document Number: 69950 S09-0075-Rev. E, 26-Jan-09

ORDERING INFORMATION					
Temp. Range	Package	Part Number			
- 40 °C to 85 °C	miniQFN-10	DG2721DN-T1-E4			

TRUTH TABLE						
IN ₁ (Pin 10)	IN ₂ (Pin 8)	Function				
Х	0	COM2 = NC ₂				
Х	1	COM2 = NO ₂				
0	X	COM1 = NC ₁				
1	Х	COM1 = NO ₁				

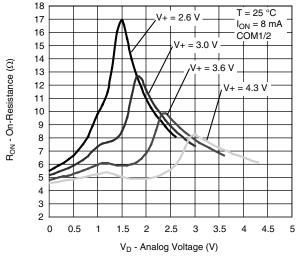
PIN DESCRIPTIONS				
Pin Name	Description			
IN ₁	Select Input COM ₁			
IN ₂	Select Input COM ₂			
NC _{1/2} , NO _{1/2} , COM _{1/2}	Data Channel			

ABSOLUTE MAXIMUM RATINGS T _A = 25 °C, unless otherwise noted					
Parameter		Limit	Unit		
Reference to GND	V+	- 0.3 to 5.5	V		
neleterice to GND	IN _X , NC _X , NO _X , COM _X ^a	- 0.3 to (V+ + 0.3)	¬		
Current (Any Terminal except IN _X , NC	(X, NO_X, COM_X)	30			
Continuous Current (IN _X , NC _X , NO _X , COM _X)		± 250	mA		
Peak Current (Pulsed at 1 ms, 10 % duty cycle)		± 500			
Storage Temperature (D Suffix)		- 65 to 150	°C		
Power Dissipation (Packages) ^b	miniQFN-10 ^c	208	mW		
ESD (Human Body Model) All Pins I/O to GND		4 8	kV		
Latch-up (Current Injection)		350	mA		

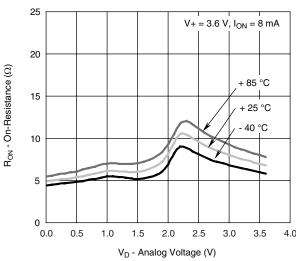
Notes:

- a. Signals on IN_X , NC_X , NO_X , COM_X exceeding V+ will be clamped by internal diodes. Limit forward diode current to maximum current ratings. b. All leads welded or soldered to PC board.
- c. Derate 2.6 mW/°C above 70 °C.

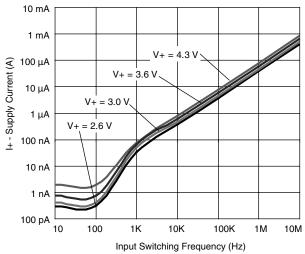
Analog Switch	SPECIFICATIONS V+ = 3.0 V							
Parameter Symbol Otherwise Unless Specified Temp. ⁸ Min. ^b Typ. ^c Max. ^b U Analog Switch								
Analog Switch Analog Signal Ranged VANALOG Ros(m) V+ = 3.0 V. I _{COM} = 8 mA, V _{NC/NO} = 0.4 V. Full 0 V+ V+ V+ V+ V+ V+ V+								
Analog Signal Range VANALOG Ros(on) Full 0 V+ Room 0 V+ Ros V+ V+ V+ V+ V+ V+ V+ V		Symbol	Otherwise Unless Specified	Temp. ^a	Min. ^b	Typ. ^c	Max. ^D	Unit
On-Resistance PiDS(on) V+ = 3.0 V, I _{COM} = 8 mA, V _{NCNO} = 0.4 V PiU NO Piu Piu NO Piu NO Piu Piu Piu NO Piu Piu Piu NO Piu Piu Piu NO Piu NO Piu Pi		.,		l		1		
On-Resistance Piss(cn) V+=3.0 V, I _{COM} = 8 mA, V _{NC/NO} = 0.4 V Full	Analog Signal Range ^d	V _{ANALOG}	H _{DS(on)}	_	0			V
Switch Off Leakage Current I _{(off) I_{(off) I_{(o}}}</sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub>	On-Resistance	$R_{DS(on)}$	$V+ = 3.0 \text{ V}, I_{COM} = 8 \text{ mA}, V_{NC/NO} = 0.4 \text{ V}$			5.7		
Switch Off Leakage Current I _(off) V+ = 4.3 V, V _{NC/NO} = 0.3 V, 4.0 V, V _{COM} = 3.0 V, 0.3 V	On-Resistance Match ^d	ΔR_{ON}	$V+ = 3.0 \text{ V}, I_{COM} = 8 \text{ mA}, V_{NC/NO} = 0.4 \text{ V}$	Room		0.35		Ω
Common	On-Resistance Resistance Flatness ^d		$V+ = 3.0 \text{ V}, I_{COM} = 8 \text{ mA}, V_{NC/NO} = 0.0 \text{ V}, 1.0 \text{ V}$	Room		2		
Channel On Leakage Current I (on) V+ = 4.3 V, N _{OCANO} = 0.3 V, 4.0 V, V _{COM} = 4.0 V, 0.3 V Full -200 200	Switch Off Leakage Current	I _(off)		Full	- 100		100	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Channel On Leakage Current	I _(on)		Full	- 200		200	nA
Input Voltage High	Digital Control							
Note	Input Voltage High	V	V+ = 3.0 V to 3.6 V	Full	1.3			
Input Capacitance C _{IN} Input Current I _{INL} or I _{INH} V _{IN} = 0 or V+ Full -1 -1 1 1 1 1 1 1 1	input voitage High	VINH	V+ = 4.3 V	Full	1.7			٧
Input Current Input Curre	Input Voltage Low	V_{INL}	V+ = 3.0 V to 4.3 V	Full			0.5	
	Input Capacitance	C _{IN}		Full		5.6		pF
Break-Before-Make Time ^{e, d} t _{BBM}	Input Current	I _{INL} or I _{INH}	V _{IN} = 0 or V+	Full	- 1		1	μΑ
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Dynamic Characteristics							
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Break-Before-Make Time ^{e, d}	t _{BBM}				5		
Turn-Off Time ^{6, 0} toff Full 25 Charge Injection ^d Q_{INJ} $C_L = 1 \text{ nF}, R_{GEN} = 0 \Omega, V_{GEN} = 0 V$ 0.5 p Off-Isolation ^d OIRR $V + = 3.0 \text{ V to } 3.6 \text{ V}, R_L = 50 \Omega, C_L = 5 \text{ pF}, f = 240 \text{ MHz}$ -30 -30 -49 Crosstalk ^d X_{TALK} $V + = 3.0 \text{ V to } 3.6 \text{ V}, R_L = 50 \Omega, C_L = 5 \text{ pF}, -3 dB$ -49 -49 Bandwidth ^d BW $V + = 3.0 \text{ V to } 3.6 \text{ V}, R_L = 50 \Omega, C_L = 5 \text{ pF}, -3 dB$ Room 4 Channel-Off Capacitance ^d $C_{NO(off)}$ $V + = 3.3 \text{ V}, f = 1 \text{ MHz}$ Room 11 Channel-On Capacitance ^d $C_{COM(on)}$ $V + = 3.0 \text{ V to } 3.6 \text{ V}, R_L = 50 \Omega, C_L = 5 \text{ pF}$ 50 50 Skew Off Opposite Transitions of the Same Output ^d $t_{SK(p)}$ $V + = 3.0 \text{ V to } 3.6 \text{ V}, R_L = 50 \Omega, C_L = 5 \text{ pF}$ 20 1 Power Supply Power Supply Range $V + = 3.0 \text{ V to } 3.6 \text{ V}$ $V + = 3.0 \text{ V to } 3.6 \text{ V}$ $V + = 3.0 \text{ V to } 3.6 \text{ V}$ $V + = 3.0 \text{ V to } 3.6 \text{ V}$ $V + = 3.0 \text{ V to } 3.6 \text{ V}$ $V + = 3.0 \text{ V to } 3.6 \text{ V}$ $V + = 3.0 \text{ V to } 3.6 \text{ V}$ $V + = 3.0 \text{ V to } 3.6 $	Turn-On Time ^{e, d}	t _{ON}					30	ns
Off-Isolation ^d OIRR V+ = 3.0 V to 3.6 V, R _L = 50 Ω, C _L = 5 pF, f = 240 MHz - 30 - 30 - 49 - 49 - 49 - 49 - 49 - 500 M - 500 - 500 M - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 <td>Turn-Off Time^{e, d}</td> <td>t_{OFF}</td> <td></td> <td></td> <td></td> <td></td> <td>25</td> <td></td>	Turn-Off Time ^{e, d}	t _{OFF}					25	
Off-Isolation ^d OIRR V+ = 3.0 V to 3.6 V, R _L = 50 Ω, C _L = 5 pF, f = 240 MHz - 30 - 30 - 49 - 49 - 49 - 49 - 49 - 240 MHz - 49 - 500 M - 500 M - 30 - 49 - 49 - 500 M - 49 - 500 M - 500 M - 500 M - 49 - 500 M - 500 - 500 M - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 <td>Charge Injection^d</td> <td>Q_{INJ}</td> <td>C_L = 1 nF, R_{GEN} = 0 Ω, V_{GEN} = 0 V</td> <td></td> <td></td> <td>0.5</td> <td></td> <td>рС</td>	Charge Injection ^d	Q _{INJ}	C _L = 1 nF, R _{GEN} = 0 Ω, V _{GEN} = 0 V			0.5		рС
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	• ,	OIRR	$V_{+} = 3.0 \text{ V to } 3.6 \text{ V. R}_{I} = 50 \Omega$, $C_{I} = 5 \text{ pF}$.			- 30		dB
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		X _{TALK}				- 49		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			_			> 500		MHz
Channel-Off Capacitance $\frac{C_{NC(off)}}{C_{COM(on)}}$ $V+=3.3 \text{ V}, f=1 \text{ MHz}$ $\frac{4}{11}$ $\frac{4}{11}$ $\frac{1}{11}$ $\frac{1}$		C _{NO(off)}	3 <u>2</u> 3 pr., 3 az			4		
Channel-On Capacitance ^d $C_{COM(on)}$ 11 Channel-to-Channel Skew ^d $t_{SK(O)}$ 50 Skew Off Opposite Transitions of the Same Output ^d $t_{SK(p)}$ $t_{SK(p)}$ Total Jitter ^d t_{J} Power Supply Power Supply Range V_{+}	Channel-Off Capacitance ^d		V+ = 3.3 V. f = 1 MHz	Room				pF
Channel-to-Channel Skew ^d $t_{SK(O)}$ Skew Off Opposite Transitions of the Same Output ^d $t_{SK(p)}$ Total Jitter ^d t_J Power Supply Power Supply Range V+ $ \begin{array}{c cccccccccccccccccccccccccccccccc$	Channel-On Canacitance ^d		3.5 1,1 1					
Skew Off Opposite Transitions of the Same Output ^d $t_{SK(p)}$ $V_{+} = 3.0 \text{ V}$ to 3.6 V , $R_{L} = 50 \Omega$, $C_{L} = 5 \text{ pF}$ 20 J 200 Power Supply Power Supply Range V_{+} 2.6 4.3	-		+					
Total Jitter ^d t _J 200 Power Supply Power Supply Range V+ 2.6 4.3	Skew Off Opposite Transitions of the		$V+ = 3.0 \text{ V to } 3.6 \text{ V}, \text{ R}_{L} = 50 \Omega, \text{ C}_{L} = 5 \text{ pF}$					ps
Power Supply Power Supply Range V+ 2.6 4.3	· · · · · · · · · · · · · · · · · · ·	t,				200		1
Power Supply Range V+ 2.6 4.3		J						
		V+			2.6		4.3	V
Power Supply Current + VIN = U V, Or V+ Full 1 / 2 I	Power Supply Current	I+	V _{IN} = 0 V, or V+	Full			2	μA


Notes:

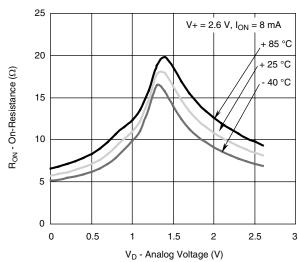
- a. Room = 25 $^{\circ}$ C, Full = as determined by the operating suffix.
- b. The algebraic convention whereby the most negative value is a minimum and the most positive a maximum, is used in this data sheet.
- c. Typical values are for design aid only, not guaranteed nor subject to production testing.
- d. Guarantee by design, not subjected to production test.
- e. V_{IN} = input voltage to perform proper function.
- f. Crosstalk measured between channels.

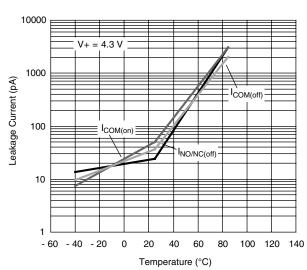

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

VISHAY.


TYPICAL CHARACTERISTICS $T_A = 25$ °C, unless otherwise noted

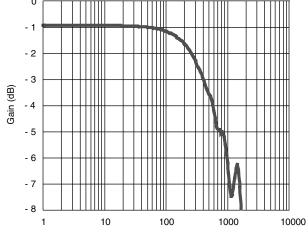

On-Resistance vs. $V_{\rm D}$ and Single Supply Voltage

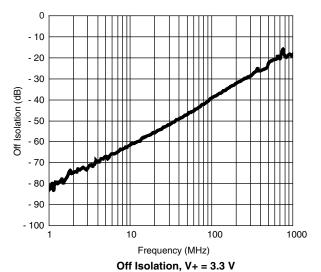

On-Resistance vs. Analog Voltage and Temperature

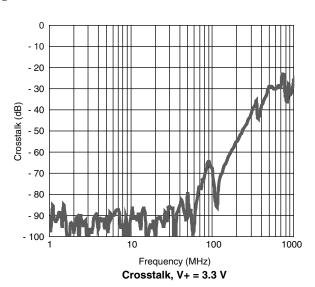

Supply Current vs. Input Switching Frequency

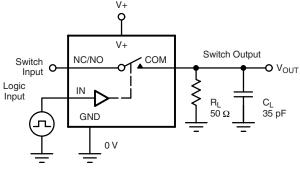
On-Resistance vs. Analog Voltage and Temperature

On-Resistance vs. Analog Voltage and Temperature




Leakage Current vs. Temperature




TYPICAL CHARACTERISTICS $T_A = 25$ °C, unless otherwise noted

TEST CIRCUITS

C_L (includes fixture and stray capacitance)

$$V_{OUT} = V_{COM} \left(\frac{R_L}{R_L + R_{ON}} \right)$$

Logic Input V_{INH} V_{INL} $V_$

Logic "1" = Switch On Logic input waveforms inverted for switches that have the opposite logic sense.

Figure 1. Switching Time

VISHAY.

TEST CIRCUITS

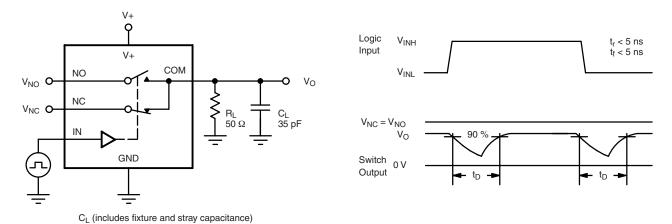


Figure 2. Break-Before-Make Interval

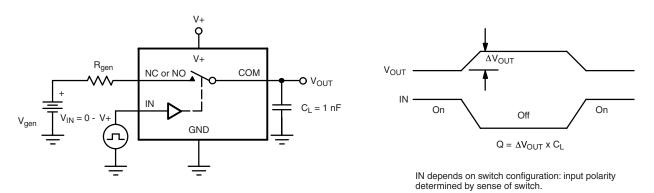
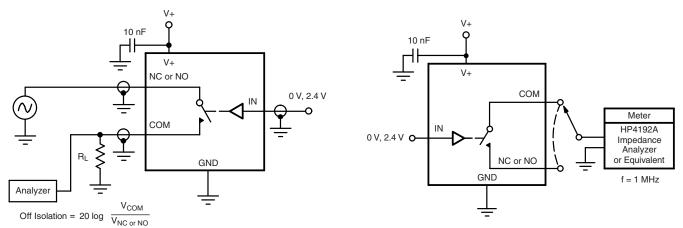
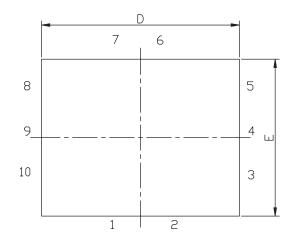
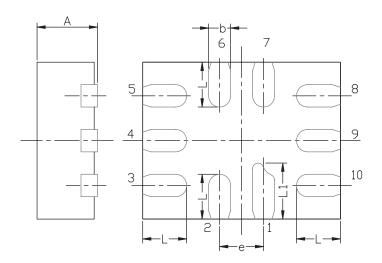
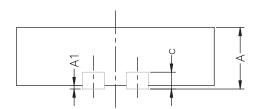


Figure 3. Charge Injection

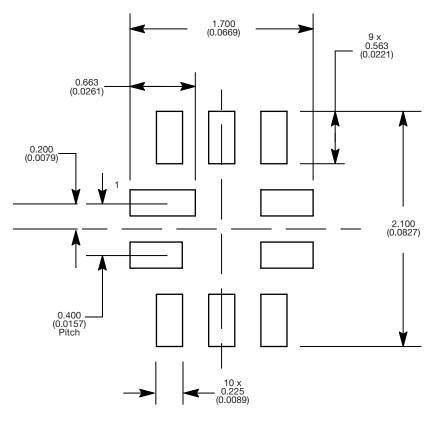

Figure 4. Off-Isolation


Figure 5. Channel Off/On Capacitance

Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and reliability data, see www.vishay.com/ppq?69950.

MINI QFN-10L CASE OUTLINE

DIM	MILLIMETERS			INCHES		
DIIVI	MIN.	NAM.	MAX.	MIN.	NAM.	MAX.
Α	0.50	0.55	0.60	0.0197	0.0217	0.0236
A1	0.00	-	0.05	0.000	-	0.002
b	0.15	0.20	0.25	0.006	0.008	0.010
С	0.15 REF				0.006 REF	
D	1.75	1.80	1.85	0.069 0.071 0.073		
E	1.35	1.40	1.45	0.053	0.055	0.057
е	0.40 BSC				0.016 BSC	
L	0.35	0.40	0.45	0.014	0.016	0.018
L1	0.45	0.50	0.55	0.0177	0.0197	0.0217


ECN T-07039-Rev. A, 12-Feb-07

DWG: 5957

Document Number: 74496 12-Feb-07 www.vishay.com

RECOMMENDED MINIMUM PADS FOR MINI QFN 10L

Mounting Footprint Dimensions in mm (inch)

Document Number: 66554 Revision: 05-Mar-10

Legal Disclaimer Notice

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and/or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

Material Category Policy

Vishay Intertechnology, Inc. hereby certifies that all its products that are identified as RoHS-Compliant fulfill the definitions and restrictions defined under Directive 2011/65/EU of The European Parliament and of the Council of June 8, 2011 on the restriction of the use of certain hazardous substances in electrical and electronic equipment (EEE) - recast, unless otherwise specified as non-compliant.

Please note that some Vishay documentation may still make reference to RoHS Directive 2002/95/EC. We confirm that all the products identified as being compliant to Directive 2002/95/EC conform to Directive 2011/65/EU.

Vishay Intertechnology, Inc. hereby certifies that all its products that are identified as Halogen-Free follow Halogen-Free requirements as per JEDEC JS709A standards. Please note that some Vishay documentation may still make reference to the IEC 61249-2-21 definition. We confirm that all the products identified as being compliant to IEC 61249-2-21 conform to JEDEC JS709A standards.

Revision: 02-Oct-12 Document Number: 91000