

DESCRIPTION

for surface mounting (SMD).

VSMF2893RGX01, VSMF2893GX01

www.vishay.com

Vishay Semiconductors

AUTOMOTIVE

ROHS

HALOGEN

FREE GREEN

(5-2008)

High Speed Infrared Emitting Diodes, 890 nm, GaAlAs, DH

VSMF2893X01 series are infrared, 890 nm emitting diodes

in GaAlAs (DH) technology with high radiant power and high

speed, molded in clear, untinted plastic packages (with lens)

FEATURES

- Package type: surface-mount
- · Package form: GW, RGW
- Dimensions (L x W x H in mm): 2.3 x 2.3 x 2.55
- AEC-Q101 qualified
- Peak wavelength: λ_p = 890 nm
- High reliability
- · High radiant power
- High radiant intensity
- Angle of half intensity: $\varphi = \pm 25^{\circ}$
- Low forward voltage
- · Suitable for high pulse current operation
- Terminal configurations: gullwing or reserve gullwing
- Package matches with detector VEMD2xx3X01 and VEMT2xx3X01 series
- Floor life: 4 weeks, MSL 2a, according to J-STD-020
- Material categorization: for definitions of compliance please see <u>www.vishay.com/doc?99912</u>

APPLICATIONS

- IrDA compatible data transmission
- 3D TV
- IR touch panels
- Miniature light barrier
- Photointerrupters
- · Optical switch
- Shaft encoders
- IR emitter source for proximity applications

PRODUCT SUMMARY					
COMPONENT	I _e (mW/sr)	φ (deg)	$\lambda_{\mathbf{p}}$ (nm)	t _r (ns)	
VSMF2893RGX01	20	± 25	890	30	
VSMF2893GX01	20	± 25	890	30	

Note

· Test conditions see table "Basic Characteristics"

ORDERING INFORMATION					
ORDERING CODE	PACKAGING	REMARKS	PACKAGE FORM		
VSMF2893RGX01	Tape and reel	MOQ: 6000 pcs, 6000 pcs/reel	Reverse gullwing		
VSMF2893GX01	Tape and reel	MOQ: 6000 pcs, 6000 pcs/reel	Gullwing		

Note

· MOQ: minimum order quantity

Rev. 1.1, 30-Sep-2019 **1** Document Number: 83484

www.vishay.com

Vishay Semiconductors

ABSOLUTE MAXIMUM RATINGS (T _{amb} = 25 °C, unless otherwise specified)				
PARAMETER	TEST CONDITION	SYMBOL	VALUE	UNIT
Reverse voltage		V _R	5	V
Forward current		I _F	100	mA
Peak forward current	$t_p/T = 0.5, t_p = 100 \mu s$	I _{FM}	200	mA
Surge forward current	t _p = 100 μs	I _{FSM}	1	Α
Power dissipation		P _V	160	mW
Junction temperature		Tj	100	°C
Operating temperature range		T _{amb}	-40 to +85	°C
Storage temperature range		T _{stg}	-40 to +100	°C
Soldering temperature	According to Fig. 9, J-STD-020	T _{sd}	260	°C
Thermal resistance junction-to-ambient	J-STD-051, leads 7 mm, soldered on PCB	R _{thJA}	250	K/W

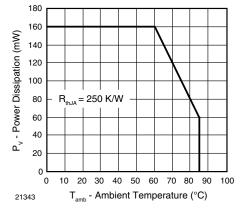


Fig. 1 - Power Dissipation Limit vs. Ambient Temperature

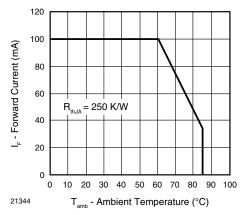


Fig. 2 - Forward Current Limit vs. Ambient Temperature

BASIC CHARACTERSITICS (T _{amb} = 25 °C, unless otherwise specified)						
PARAMETER	TEST CONDITION	SYMBOL	MIN.	TYP.	MAX.	UNIT
Famuurd valtage	$I_F = 100 \text{ mA}, t_p = 20 \text{ ms}$	V_{F}	1.25	1.4	1.6	V
Forward voltage	$I_F = 1 \text{ A}, t_p = 100 \ \mu\text{s}$	V_{F}		2.3		V
Temperature coefficient of V	I _F = 1 mA	TK _{VF}		-1.8	mV/ mV/ 10 μA pF 30 mW/ mW/ mW/	mV/K
Temperature coefficient of V _F	I _F = 100 mA	TK _{VF}		-1.1		mV/K
Reverse current	V _R = 5 V	I _R			10	μΑ
Junction capacitance	$V_R = 0 \text{ V, f} = 1 \text{ MHz, E} = 0 \text{ mW/cm}^2$	CJ		125		pF
Dedient intensity	$I_F = 100 \text{ mA}, t_p = 20 \text{ ms}$	l _e	10	20	25 pF 20 30 mW/sr 80 mW/sr 40 mW	mW/sr
Radiant intensity	$I_F = 1 \text{ A}, t_p = 100 \ \mu\text{s}$	l _e		180		mW/sr
Radiant power	$I_F = 100 \text{ mA}, t_p = 20 \text{ ms}$	фe		40		mW
Temperature coefficient of φ _e	I _F = 100 mA	TKφ _e		-0.35		%/K
Angle of half intensity		φ		± 25		deg
Peak wavelength	I _F = 30 mA	λ_{p}	870	890	910	nm
Spectral bandwidth	I _F = 30 mA	Δλ		40		nm
Temperature coefficient of λ _p	I _F = 30 mA	TKλ _p		0.25		nm/K
Rise time	I _F = 100 mA, 20 % to 80 %	t _r		30		ns
Fall time	I _F = 100 mA, 20 % to 80 %	t _f		30		ns
Cut-off frequency	$I_{DC} = 70$ mA, $I_{AC} = 30$ mA pp	f _c		12		MHz

110

108

106

104 102

100

98

96 94

92

90

V_{F, rel} - Relative Forward Voltage (%)

VSMF2893RGX01, VSMF2893GX01

Vishay Semiconductors

BASIC CHARACTERISTICS (T_{amb} = 25 °C, unless otherwise specified)

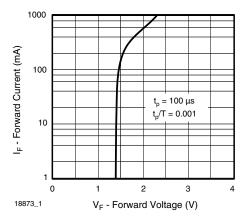


Fig. 3 - Forward Current vs. Forward Voltage

Fig. 4 - Relative Forward Voltage vs. Ambient Temperature

40

T_{amb} - Ambient Temperature (°C)

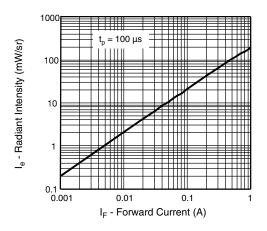


Fig. 5 - Radiant Intensity vs. Forward Current

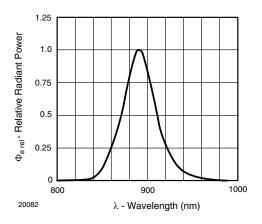


Fig. 6 - Relative Radiant Power vs. Wavelength

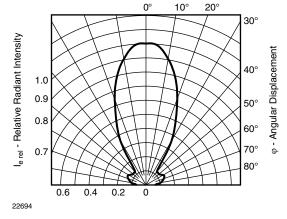


Fig. 7 - Relative Radiant Intensity vs. Angular Displacement

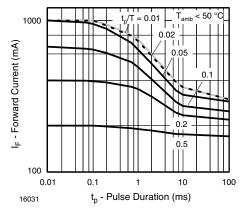


Fig. 8 - Pulse Forward Current vs. Pulse Duration

Vishay Semiconductors

SOLDER PROFILE

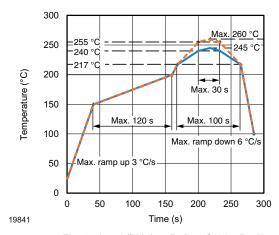


Fig. 9 - Lead (Pb)-free Reflow Solder Profile according to J-STD-020

DRYPACK

Devices are packed in moisture barrier bags (MBB) to prevent the products from moisture absorption during transportation and storage. Each bag contains a desiccant.

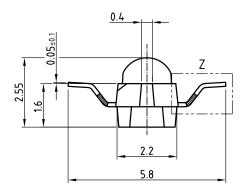
FLOOR LIFE

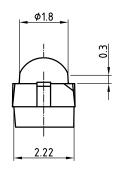
Floor life (time between soldering and removing from MBB) must not exceed the time indicated on MBB label:

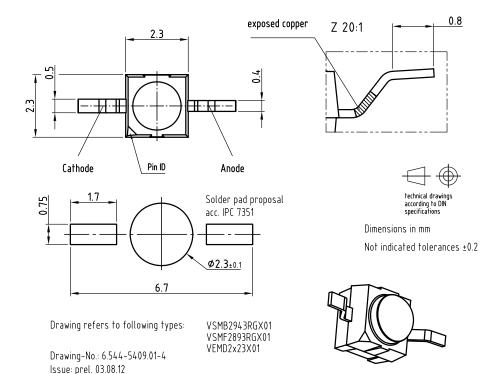
Floor life: 4 weeks

Conditions: T_{amb} < 30 °C, RH < 60 %

Moisture sensitivity level 2a, according to J-STD-020.

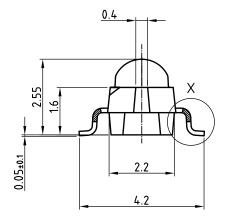

DRYING

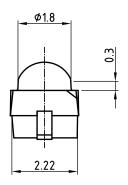

In case of moisture absorption devices should be baked before soldering. Conditions see J-STD-020 or label. Devices taped on reel dry using recommended conditions 192 h at 40 $^{\circ}$ C (+ 5 $^{\circ}$ C), RH < 5 $^{\circ}$ M.

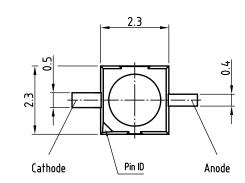


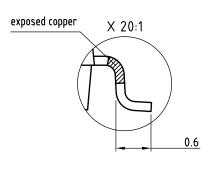
www.vishay.com Vishay Semiconductors

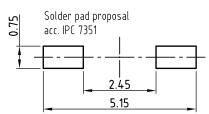
PACKAGE DIMENSIONS in millimeters: VSMF2893RGX01






www.vishay.com


Vishay Semiconductors


PACKAGE DIMENSIONS in millimeters: VSMF2893GX01

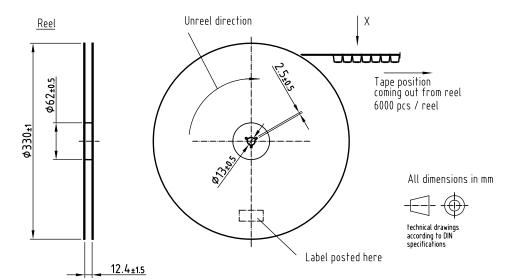
Not indicated tolerances ±0.2

Drawing refers to following types:

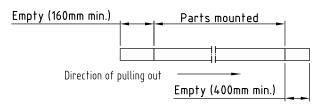
VSMB2943GX01

VSMF2893GX01 VEMD2x23X01

Drawing-No.: 6.544-5408.01-4

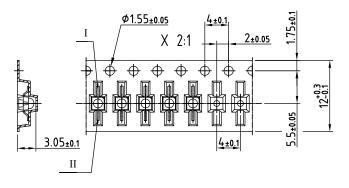

Issue: prel; 03.08.12

Dimensions in mm



Vishay Semiconductors

TAPING AND REEL DIMENSIONS in millimeters: VSMF2893RGX01

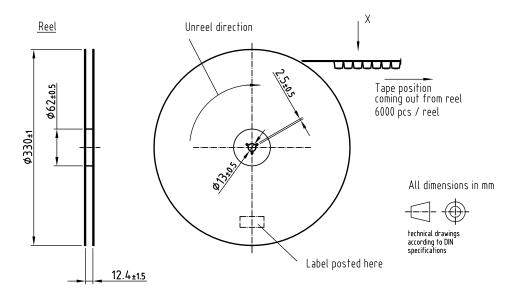


Leader and trailer tape:

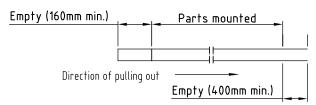
Terminal position in tape

Lead I	Lead II	
C.11	Anode	
Carnode	Anode	
Callactor	Emitter	
COLLECTOR	Limiter	
Anode	Cathode	
	Cathode Collector	

Drawing refers to following types: Reel dimensions and tape


see table

Drawing-No.: 9.800-5100.02-4 Issue: prel; 03.08.12



Vishay Semiconductors

TAPING AND REEL DIMENSIONS in millimeters: VSMF2893GX01

Leader and trailer tape:

<u>Terminal p</u>	osition in t	t <u>ape</u>	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
Device	Lead I	Lead II	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
VSMB2943GX01				
VSMF2893GX01	Cathode	\		<u> </u>
VEMD2x23X01	Carnode	Anode		_
				12-0.3
				13
VEMT2x23X01	Collector	Emitter		
	Cottector	Lilline		
VSMY2853G	Anode	Cathode]3.05±0.1	

Drawing refers to following types: see table Reel dimensions and tape

Drawing-No.: 9.800-5091.21-4 Issue: prel; 03.08.12

Legal Disclaimer Notice

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

© 2019 VISHAY INTERTECHNOLOGY, INC. ALL RIGHTS RESERVED