# 0.3 pC Charge Injection, 100 pA Leakage CMOS $\pm 5$ V / 5 V / 3 V 4-Channel Multiplexer 

## DESCRIPTION

The DG604E is an analog 4-channel CMOS, multiplexer, designed to operate from $\mathrm{a}+3 \mathrm{~V}$ to +16 V single supply, or from $\pm 3 \mathrm{~V}$ to $\pm 8 \mathrm{~V}$, dual supplies. The DG604E is fully specified at $+3 \mathrm{~V},+5 \mathrm{~V}$ and $\pm 5 \mathrm{~V}$.
The DG604E offers ultralow charge injection less than $\pm 0.4 \mathrm{pC}$ over the entire signal range and leakage currents of 16 pA typical at $25^{\circ} \mathrm{C}$. It offers on resistance of $64 \Omega$ typ., and low parasitic capacitance of 4.2 pF source off, and 11 pF Drain on. The part is ideal for analog front end, data acquisition and sample and hold designs providing fast and precision signal switching.
The DG604E switches one of four inputs to a common output as determined by the 3-bit binary address lines: A0, A1, and EN. Each switch conducts equally well in both directions when on, blocks input voltages up to the supply level when off, and exhibits break before make switching action.
All control logic inputs have guaranteed 2 V logic high limits when operating from +5 V or $\pm 5 \mathrm{~V}$ supplies and 1.4 V when operating from a 3 V supply.
The DG604E operating temperature range is specified from $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$. It is available in 14 lead TSSOP and the space saving $1.8 \mathrm{~mm} \times 2.6 \mathrm{~mm}$ miniQFN package.

## FEATURES

- Ultra low charge injection (less than $\pm 0.4 \mathrm{pC}$, typ. over the full analog signal range)
- Leakage current $<0.5 \mathrm{nA}$ max. at $85^{\circ} \mathrm{C}$ (for DG604EEQ-T1-GE4)

- Low switch capacitance ( $\mathrm{C}_{\mathrm{S}(\text { off })}, 4.2 \mathrm{pF}$ typ.)
- Fully specified with single supply operation at $3 \mathrm{~V}, 5 \mathrm{~V}$, and dual supplies at $\pm 5 \mathrm{~V}$
- CMOS / TTL compatible
- $414 \mathrm{MHz},-3 \mathrm{~dB}$ bandwidth
- Excellent isolation and crosstalk performance (typ. > -60 dB at 10 MHz )
- Fully specified from $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ and $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
- 14 pin TSSOP and 16 pin miniQFN package ( $1.8 \mathrm{~mm} \times 2.6 \mathrm{~mm}$ )
- Material categorization: for definitions of compliance please see www.vishay.com/doc?99912


## APPLICATIONS

- Data acquisition systems
- Medical instruments
- Precision instruments
- Communications systems
- Automated test equipment
- Sample and hold circuit
- Relay replacement


## FUNCTIONAL BLOCK DIAGRAM AND PIN CONFIGURATION



DG604E

| TRUTH TABLE |  |  |  |
| :---: | :---: | :---: | :---: |
| ENABLE <br> INPUT | A1 | A0 | ON SWITCHES |
|  | X | X | DG604E |
| L | L | L | All switches open |
| H | L | H | D to S1 |
| H | H | L | D to S2 |
| H | H | H | D to S3 |
| H | D to S4 |  |  |


| ORDERING INFORMATION |  |  |
| :---: | :---: | :---: |
| TEMP. RANGE | PACKAGE | PART NUMBER |
| $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ a | 14 pin TSSOP | DG604EEQ-T1-GE4 |
|  | 16 pin miniQFN | DG604EEN-T1-GE4 |

## Note

a. $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ datasheet limits apply

| ABSOLUTE MAXIMUM RATINGS ( $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted) |  |  |  |
| :---: | :---: | :---: | :---: |
| PARAMETER |  | LIMIT | UNIT |
| V+ to V- |  | -0.3 to +18 | V |
| GND to V- |  | 18 |  |
| $\mathrm{V}_{\mathrm{S}}, \mathrm{V}_{\mathrm{D}}$ |  | (V-) -0.3 to ( $\mathrm{V}+$ ) +0.3 or 30 mA , whichever occurs first |  |
| Digital inputs ${ }^{\text {a }}$ |  | (GND) -0.3 to (V+) + 0.3 |  |
| Continuous current (any terminal) |  | 30 | mA |
| Peak current, S or D (pulsed $1 \mathrm{~ms}, 10$ \% duty cycle) |  | 100 |  |
| Storage temperature |  | -65 to +150 | ${ }^{\circ} \mathrm{C}$ |
| Power dissipation (package) ${ }^{\text {b }}$ | $14 \mathrm{pin} \mathrm{TSSOP}{ }^{\text {c }}$ | 450 | mW |
|  | 16 pin miniQFN ${ }^{\text {d, e }}$ | 525 |  |
| Thermal resistance (package) ${ }^{\text {b }}$ | 14 pin TSSOP | 178 | ${ }^{\circ} \mathrm{C} / \mathrm{W}$ |
|  | 16 pin miniQFN | 152 |  |
| ESED / HBM | EIA / JESD22-A114-A | 2K | V |
| ESD / CDM | EIA / JESD22-C101-A | 1K |  |
| Latch up | JESD78 | 300 | mA |

## Notes

a. Signals on $S_{X}, D_{X}$, or $I N_{X}$ exceeding $V+$ or $V$ - will be clamped by internal diodes. Limit forward diode current to maximum current ratings
b. All leads welded or soldered to PC board
c. Derate $5.6 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $70^{\circ} \mathrm{C}$
d. Derate $6.6 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $70^{\circ} \mathrm{C}$
e. Manual soldering with iron is not recommended for leadless components. The miniQFN-16 is a leadless package. The end of the lead terminal is exposed copper (not plated) as a result of the singulation process in manufacturing. A solder fillet at the exposed copper lip cannot be guaranteed and is not required to ensure adequate bottom side solder interconnection

DG604E

| PARAMETER | SYMBOL | TEST CONDITIONS UNLESS OTHERWISE SPECIFIED $\mathrm{V}+=5 \mathrm{~V}, \mathrm{~V}-=-5 \mathrm{~V}$ <br> $\mathrm{V}_{\text {IN A0, A1, AND ENABLE }}=2 \mathrm{~V}, 0.8 \mathrm{Va}$ | TEMP. ${ }^{\text {b }}$ | TYP. ${ }^{\text {c }}$ | $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ |  | $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ |  | UNIT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  | MIN. ${ }^{\text {d }}$ | MAX. ${ }^{\text {d }}$ | MIN. ${ }^{\text {d }}$ | MAX. ${ }^{\text {d }}$ |  |
| Analog Switch |  |  |  |  |  |  |  |  |  |
| Analog signal range ${ }^{\text {e }}$ | $\mathrm{V}_{\text {ANALOG }}$ |  | Full | - | -5 | 5 | -5 | 5 | V |
| Drain-source On-resistance | $\mathrm{R}_{\mathrm{DS} \text { (on) }}$ | $\mathrm{I}_{\mathrm{S}}=1 \mathrm{~mA}, \mathrm{~V}_{\mathrm{D}}=-3 \mathrm{~V}, 0 \mathrm{~V},+3 \mathrm{~V}$ | Room | 64 | - | 101 | - | 101 | $\Omega$ |
|  |  |  | Full | - | - | 135 | - | 119 |  |
| On-resistance match | $\Delta \mathrm{R}_{\mathrm{DS} \text { (on) }}$ | $\mathrm{I}_{\mathrm{S}}=1 \mathrm{~mA}, \mathrm{~V}_{\mathrm{D}}= \pm 3 \mathrm{~V}$ | Room | 0.5 | - | 5 | - | 5 |  |
|  |  |  | Full | - | - | 7 | - | 6 |  |
| On-resistance flatness | $\mathrm{R}_{\text {flatan) }}$ | $\mathrm{I}_{\mathrm{S}}=1 \mathrm{~mA}, \mathrm{~V}_{\mathrm{D}}=-3 \mathrm{~V}, 0 \mathrm{~V},+3 \mathrm{~V}$ | Room | 15 | - | 20 | - | 20 |  |
|  |  |  | Full | - | - | 25 | - | 23 |  |
| Switch off leakage current (for 14 pin TSSOP) | $\mathrm{I}_{\text {S(off) }}$ | $\begin{gathered} \mathrm{V}_{+}=5.5 \mathrm{~V}, \mathrm{~V}-=-5.5 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{D}}= \pm 4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}=\mp 4.5 \mathrm{~V} \end{gathered}$ | Room | $\pm 0.003$ | -0.1 | 0.1 | -0.1 | 0.1 | nA |
|  |  |  | Full | - | -18 | 18 | -0.5 | 0.5 |  |
|  | $I_{\text {D(off) }}$ |  | Room | $\pm 0.009$ | -0.1 | 0.1 | -0.1 | 0.1 |  |
|  |  |  | Full | - | -18 | 18 | -0.5 | 0.5 |  |
| Switch on leakage current (for 14 pin TSSOP) | $\mathrm{I}_{\mathrm{D} \text { (on) }}$ | $\begin{gathered} \mathrm{V}+=5.5 \mathrm{~V}, \mathrm{~V}-=-5.5 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{D}}=\mathrm{V}_{\mathrm{S}}= \pm 4.5 \mathrm{~V} \end{gathered}$ | Room | $\pm 0.016$ | -0.1 | 0.1 | -0.1 | 0.1 |  |
|  |  |  | Full | - | -18 | 18 | -0.5 | 0.5 |  |
| Switch off leakage current (for 16 pin miniQFN) | $\mathrm{I}_{\text {S(off) }}$ | $\begin{gathered} \mathrm{V}_{+}=5.5 \mathrm{~V}, \mathrm{~V}-=-5.5 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{D}}= \pm 4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}=\mp 4.5 \mathrm{~V} \end{gathered}$ | Room | $\pm 0.003$ | -1 | 1 | -1 | 1 |  |
|  |  |  | Full | - | -18 | 18 | -2 | 2 |  |
|  | $I_{\text {D(off) }}$ |  | Room | $\pm 0.009$ | -1 | 1 | -1 | 1 |  |
|  |  |  | Full | - | -18 | 18 | -2 | 2 |  |
| Switch on leakage current (for 16 pin miniQFN) | $\mathrm{I}_{\mathrm{D} \text { (on) }}$ | $\begin{gathered} \mathrm{V}+=5.5 \mathrm{~V}, \mathrm{~V}-=-5.5 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{D}}=\mathrm{V}_{\mathrm{S}}= \pm 4.5 \mathrm{~V} \end{gathered}$ | Room | $\pm 0.016$ | -1 | 1 | -1 | 1 |  |
|  |  |  | Full | - | -18 | 18 | -2 | 2 |  |
| Digital Control |  |  |  |  |  |  |  |  |  |
| Input current, $\mathrm{V}_{\text {IN }}$ low | $1 / L$ | Vin Ao, A1 and ENABLE <br> Under test $=0.8 \mathrm{~V}$ | Full | 0.00001 | -0.1 | 0.1 | -0.1 | 0.1 |  |
| Input current, $\mathrm{V}_{\text {IN }}$ high | IIH | VIN A0, A1 and ENABLE Under test $=2 \mathrm{~V}$ | Full | 0.00001 | -0.1 | 0.1 | -0.1 | 0.1 |  |
| Input capacitance | $\mathrm{C}_{\text {IN }}$ | $\mathrm{f}=1 \mathrm{MHz}$ | Room | 5 | - | - | - | - | pF |
| Dynamic Characteristics |  |  |  |  |  |  |  |  |  |
| Transition time | ${ }^{\text {t }}$ RANS | $\begin{gathered} \mathrm{V}_{\mathrm{S(CLOSE)}}=3 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}(\mathrm{OPEN})}=0 \mathrm{~V}, \\ \mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} \end{gathered}$ | Room | 29 | - | 67 | - | 67 | ns |
|  |  |  | Full | - | - | 87 | - | 82 |  |
| Turn-on time | $\mathrm{t}_{\mathrm{ON}}$ | $\begin{gathered} \mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} \\ \mathrm{~V}_{\mathrm{S}}= \pm 3 \mathrm{~V} \end{gathered}$ | Room | 26 | - | 54 | - | 54 |  |
|  |  |  | Full | - | - | 61 | - | 58 |  |
| Turn-off time | toff |  | Room | 22 | - | 52 | - | 52 |  |
|  |  |  | Full | - | - | 70 | - | 57 |  |
| Break-before-make time | $\mathrm{t}_{\text {BBM }}$ | $\begin{gathered} \mathrm{V}_{\mathrm{S}}=3 \mathrm{~V} \\ \mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} \end{gathered}$ | Room | 7 | - | - | - | - |  |
|  |  |  | Full | - | 2 | - | 2 | - |  |
| Charge injection ${ }^{\text {e }}$ | $\mathrm{Q}_{\text {INJ }}$ | $\mathrm{V}_{\mathrm{GEN}}=0 \mathrm{~V}, \mathrm{R}_{\mathrm{GEN}}=0 \Omega, \mathrm{C}_{\mathrm{L}}=1 \mathrm{nF}$ | Room | -0.3 | - | - | - | - | pC |
| Off isolation ${ }^{\text {e }}$ | OIRR | $\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=10 \mathrm{MHz}$ | Room | -67 | - | - | - | - | dB |
| Bandwidth ${ }^{\text {e }}$ | BW | $\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$ | Room | 414 | - | - | - | - | MHz |
| Channel-to-channel crosstalk ${ }^{e}$ | $\mathrm{X}_{\text {TALK }}$ | $\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=10 \mathrm{MHz}$ | Room | -65 | - | - | - | - | dB |
| Source off capacitance ${ }^{e}$ | $\mathrm{C}_{\text {S(fff) }}$ | $\mathrm{f}=1 \mathrm{MHz}$ | Room | 4.2 | - | - | - | - | pF |
| Drain off capacitance ${ }^{\text {e }}$ | $\mathrm{C}_{\text {D(fff) }}$ |  | Room | 6.8 | - | - | - | - |  |
| Drain on capacitance ${ }^{\text {e }}$ | $\mathrm{C}_{\text {D(on) }}$ |  | Room | 11 | - | - | - | - |  |

DG604E
Vishay Siliconix

| PARAMETER | SYMBOL | TEST CONDITIONS UNLESS OTHERWISE SPECIFIED$\mathrm{V}+=5 \mathrm{~V}, \mathrm{~V}-=-5 \mathrm{~V}$$\mathrm{V}_{\mathrm{IN} \mathrm{AO}, \mathrm{~A} 1, \mathrm{AND} \operatorname{ENABLE}}=2 \mathrm{~V}, 0.8 \mathrm{Va}^{\mathrm{a}}$ | TEMP. ${ }^{\text {b }}$ | TYP. ${ }^{\text {c }}$ | $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ |  | $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ |  | UNIT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  | MIN. ${ }^{\text {d }}$ | MAX. ${ }^{\text {d }}$ | MIN. ${ }^{\text {d }}$ | MAX. ${ }^{\text {d }}$ |  |
| Power Supply |  |  |  |  |  |  |  |  |  |
| Power supply current | $1+$ | $\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$ or $\mathrm{V}_{+}$ | Room | 0.0004 | - | 0.5 | - | 0.5 | $\mu \mathrm{A}$ |
|  |  |  | Full | - | - | 1 | - | 1 |  |
| Negative supply current | I- |  | Room | -0.0004 | -0.5 | - | -0.5 | - |  |
|  |  |  | Full | - | -1 | - | -1 | - |  |
| Ground current | $\mathrm{I}_{\text {GND }}$ |  | Room | -0.0004 | -0.5 | - | -0.5 | - |  |
|  |  |  | Full | - | -1 | - | -1 | - |  |

## Notes

a. Signals on $S_{x}, D_{x}$, or $I N_{x}$ exceeding $V+$ or $V$ - will be clamped by internal diodes. Limit forward diode current to maximum current ratings
b. All leads welded or soldered to PC board
c. Derate $5.6 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $70^{\circ} \mathrm{C}$
d. Derate $6.6 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $70^{\circ} \mathrm{C}$
e. Manual soldering with iron is not recommended for leadless components. The miniQFN-16 is a leadless package. The end of the lead terminal is exposed copper (not plated) as a result of the singulation process in manufacturing. A solder fillet at the exposed copper lip cannot be guaranteed and is not required to ensure adequate bottom side solder interconnection

DG604E

SPECIFICATIONS FOR SINGLE SUPPLY $(\mathrm{V}+=5 \mathrm{~V}, \mathrm{~V}-=0 \mathrm{~V})$

| PARAMETER | SYMBOL | TEST CONDITIONS UNLESS OTHERWISE SPECIFIED $\mathrm{V}+=5 \mathrm{~V}, \mathrm{~V}-=0 \mathrm{~V}$ <br> $\mathrm{V}_{\mathrm{IN}} \mathrm{AO}, \mathrm{A} 1$, AND ENABLE $=2 \mathrm{~V}, 0.8 \mathrm{Va}$ | TEMP. ${ }^{\text {b }}$ | TYP. ${ }^{\text {c }}$ | $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ |  | $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ |  | UNIT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  | MIN. ${ }^{\text {d }}$ | MAX. ${ }^{\text {d }}$ | MIN. ${ }^{\text {d }}$ | MAX. ${ }^{\text {d }}$ |  |
| Analog Switch |  |  |  |  |  |  |  |  |  |
| Analog signal range ${ }^{\text {e }}$ | VANALOG |  | Full | - | 0 | 5 | 0 | 5 | V |
| Drain-source On-resistance | $\mathrm{R}_{\mathrm{DS} \text { (on) }}$ | $\mathrm{I}_{\mathrm{S}}=1 \mathrm{~mA}, \mathrm{~V}_{\mathrm{D}}=+3.5 \mathrm{~V}$ | Room | 134 | - | 181 | - | 181 | $\Omega$ |
|  |  |  | Full | - | - | 232 | - | 208 |  |
| On-resistance match | $\Delta \mathrm{R}_{\mathrm{DS} \text { (on) }}$ | $\mathrm{I}_{\mathrm{S}}=1 \mathrm{~mA}, \mathrm{~V}_{\mathrm{D}}=+3.5 \mathrm{~V}$ | Room | 1.4 | - | 7 | - | 7 |  |
|  |  |  | Full | - | - | 9 | - | 8 |  |
| On-resistance flatness | $\mathrm{R}_{\text {flat(on) }}$ | $\mathrm{I}_{\mathrm{S}}=1 \mathrm{~mA}, \mathrm{~V}_{\mathrm{D}}=0 \mathrm{~V},+3.5 \mathrm{~V}$ | Room | 36 | - | 50 | - | 50 |  |
|  |  |  | Full | - | - | 54 | - | 52 |  |
| Switch off leakage current (for 14 pin TSSOP) | $\mathrm{I}_{\text {S(off) }}$ | $\begin{gathered} \mathrm{V}_{+}=5.5 \mathrm{~V}, \mathrm{~V}-=0 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{D}}=1 \mathrm{~V} / 4.5 \mathrm{~V}, \\ \mathrm{~V}_{\mathrm{S}}=4.5 \mathrm{~V} / 1 \mathrm{~V} \end{gathered}$ | Room | $\pm 0.002$ | -0.1 | 0.1 | -0.1 | 0.1 | nA |
|  |  |  | Full | - | -18 | 18 | -0.5 | 0.5 |  |
|  | $\mathrm{I}_{\mathrm{D} \text { (fff) }}$ |  | Room | $\pm 0.007$ | -0.1 | 0.1 | -0.1 | 0.1 |  |
|  |  |  | Full | - | -18 | 18 | -0.5 | 0.5 |  |
| Switch on leakage current (for 14 pin TSSOP) | $\mathrm{I}_{\mathrm{D} \text { (on) }}$ | $\begin{aligned} & \mathrm{V}+=5.5 \mathrm{~V}, \mathrm{~V}-=0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{D}}=\mathrm{V}_{\mathrm{S}}=1 \mathrm{~V} / 4.5 \mathrm{~V} \end{aligned}$ | Room | $\pm 0.01$ | -0.1 | 0.1 | -0.1 | 0.1 |  |
|  |  |  | Full | - | -18 | 18 | -0.5 | 0.5 |  |
| Switch off leakage current (for 16 pin miniQFN) | $\mathrm{I}_{\text {S(off) }}$ | $\begin{gathered} \mathrm{V}_{+}=5.5 \mathrm{~V}, \mathrm{~V}-=0 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{D}}=1 \mathrm{~V} / 4.5 \mathrm{~V}, \\ \mathrm{~V}_{\mathrm{S}}=4.5 \mathrm{~V} / 1 \mathrm{~V} \end{gathered}$ | Room | $\pm 0.002$ | -1 | 1 | -1 | 1 |  |
|  |  |  | Full | - | -18 | 18 | -2 | 2 |  |
|  | $I_{\text {(foff) }}$ |  | Room | $\pm 0.007$ | -1 | 1 | -1 | 1 |  |
|  |  |  | Full | - | -18 | 18 | -2 | 2 |  |
| Switch on leakage current (for 16 pin miniQFN) | $I_{\text {don }}$ | $\begin{aligned} & \mathrm{V}+=5.5 \mathrm{~V}, \mathrm{~V}-=0 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{D}}=\mathrm{V}_{\mathrm{S}}=1 \mathrm{~V} / 4.5 \mathrm{~V} \end{aligned}$ | Room | $\pm 0.01$ | -1 | 1 | -1 | 1 |  |
|  |  |  | Full | - | -18 | 18 | -2 | 2 |  |
| Digital Control |  |  |  |  |  |  |  |  |  |
| Input current, $\mathrm{V}_{\text {IN }}$ low | IIL | $\mathrm{V}_{\mathrm{IN}} \mathrm{A0}, \mathrm{~A} 1$, and ENABLE Under test $=0.8 \mathrm{~V}$ | Full | 0.00001 | -0.1 | 0.1 | -0.1 | 0.1 | $\mu \mathrm{A}$ |
| Input current, $\mathrm{V}_{\text {IN }}$ high | $\mathrm{I}_{\mathrm{H}}$ | $\mathrm{V}_{\text {IN A0, A1 }}$, and ENABLE Under test = 2 V | Full | 0.00001 | -0.1 | 0.1 | -0.1 | 0.1 |  |
| Input capacitance | $\mathrm{C}_{\text {IN }}$ | $\mathrm{f}=1 \mathrm{MHz}$ | Room | 5 | - | - | - | - | pF |
| Dynamic Characteristics |  |  |  |  |  |  |  |  |  |
| Transition time | ${ }^{\text {t }}$ RANS | $\begin{gathered} V_{S(C L O S E)}=3 \mathrm{~V}, V_{S(O P E N)}=0 \mathrm{~V}, \\ R_{L}=300 \Omega, C_{L}=35 \mathrm{pF} \end{gathered}$ | Room | 47 | - | 70 | - | 70 | ns |
|  |  |  | Full | - | - | 116 | - | 91 |  |
| Turn-on time | ton |  | Room | 32 | - | 52 | - | 52 |  |
|  |  |  | Full | - | - | 63 | - | 57 |  |
| Turn-off time | toff |  | Room | 26 | - | 46 | - | 46 |  |
|  |  |  | Full | - | - | 61 | - | 55 |  |
| Break-before-make-time | $\mathrm{t}_{\text {BMM }}$ |  | Room | 22 | - | - | - | - |  |
|  |  |  | Full | - | 3 | - | 3 | - |  |
| Charge injection ${ }^{\text {e }}$ | $\mathrm{Q}_{\text {INJ }}$ | $\mathrm{C}_{\mathrm{L}}=1 \mathrm{nF}, \mathrm{R}_{\mathrm{GEN}}=0 \Omega, \mathrm{~V}_{\mathrm{GEN}}=0 \mathrm{~V}$ | Full | -0.03 | - | - | - | - | pC |
| Off-isolation ${ }^{\text {e }}$ | OIRR | $\mathrm{f}=10 \mathrm{MHz}, \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$ | Room | -66 | - | - | - | - | dB |
| Channel-to-channel crosstalk ${ }^{e}$ | $\mathrm{X}_{\text {TALK }}$ |  | Room | -64 | - | - | - | - |  |
| Bandwidth e | BW | $\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$ | Room | 358 | - | - | - | - | MHz |
| Source off capacitance ${ }^{\text {e }}$ | $\mathrm{C}_{\text {S(off) }}$ | $\mathrm{f}=1 \mathrm{MHz}$ | Room | 4.4 | - | - | - | - | pF |
| Drain off capacitance ${ }^{\text {e }}$ | $\mathrm{C}_{\mathrm{D} \text { (off) }}$ |  |  | 7.3 | - | - | - | - |  |
| Drain on capacitance ${ }^{\text {e }}$ | $\mathrm{C}_{\text {D(on) }}$ |  |  | 12 | - | - | - | - |  |

DG604E

| SPECIFICATIONS FOR SINGLE SUPPLY (V+ = $5 \mathrm{~V}, \mathrm{~V}-=0 \mathrm{~V}$ ) |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PARAMETER | SYMBOL | TEST CONDITIONS UNLESS OTHERWISE SPECIFIED $\mathrm{V}+=5 \mathrm{~V}, \mathrm{~V}-=0 \mathrm{~V}$ <br> $\mathrm{V}_{\mathrm{IN}}$ A0, A1, AND ENABLE $=2 \mathrm{~V}, 0.8 \mathrm{Va}$ | TEMP. ${ }^{\text {b }}$ | TYP. ${ }^{\text {c }}$ | $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ |  | $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ |  | UNIT |
|  |  |  |  |  | MIN. ${ }^{\text {d }}$ | MAX. ${ }^{\text {d }}$ | MIN. ${ }^{\text {d }}$ | MAX. ${ }^{\text {d }}$ |  |
| Power Supply |  |  |  |  |  |  |  |  |  |
| Power supply current | I+ | $\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$ or $\mathrm{V}_{+}$ | Room | 0.0002 | - | 0.5 | - | 0.5 | $\mu \mathrm{A}$ |
|  |  |  | Full | - | - | 1 | - | 1 |  |
| Negative supply current | I- |  | Room | -0.0002 | -0.5 | - | -0.5 | - |  |
|  |  |  | Full | - | -1 | - | -1 | - |  |
| Ground current | $\mathrm{I}_{\text {GND }}$ |  | Room | -0.0002 | -0.5 | - | -0.5 | - |  |
|  |  |  | Full | - | -1 | - | -1 | - |  |

## Notes

a. Signals on $\mathrm{S}_{\mathrm{x}}, \mathrm{D}_{\mathrm{X}}$, or $\mathrm{I} \mathrm{N}_{\mathrm{X}}$ exceeding $\mathrm{V}+$ or V - will be clamped by internal diodes. Limit forward diode current to maximum current ratings
b. All leads welded or soldered to PC board
c. Derate $5.6 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $70^{\circ} \mathrm{C}$
d. Derate $6.6 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $70^{\circ} \mathrm{C}$
e. Manual soldering with iron is not recommended for leadless components. The miniQFN-16 is a leadless package. The end of the lead terminal is exposed copper (not plated) as a result of the singulation process in manufacturing. A solder fillet at the exposed copper lip cannot be guaranteed and is not required to ensure adequate bottom side solder interconnection

DG604E

SPECIFICATIONS FOR SINGLE SUPPLY $(\mathrm{V}+=3 \mathrm{~V}, \mathrm{~V}-=0 \mathrm{~V})$

| PARAMETER | SYMBOL | TEST CONDITIONS UNLESS OTHERWISE SPECIFIED $\mathrm{V}+=3 \mathrm{~V}, \mathrm{~V}-=0 \mathrm{~V}$ <br> $\mathrm{V}_{\mathrm{IN}} \mathrm{AO}_{\mathrm{A}, \mathrm{A} 1, \mathrm{AND}} \mathrm{ENABLE}=1.4 \mathrm{~V}, 0.6 \mathrm{~V} \mathrm{a}$ | TEMP. ${ }^{\text {b }}$ | TYP. ${ }^{\text {c }}$ | $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ |  | $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ |  | UNIT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  | MIN. ${ }^{\text {d }}$ | MAX. ${ }^{\text {d }}$ | MIN. ${ }^{\text {d }}$ | MAX. ${ }^{\text {d }}$ |  |
| Analog Switch |  |  |  |  |  |  |  |  |  |
| Analog signal range ${ }^{\text {e }}$ | $\mathrm{V}_{\text {ANALOG }}$ |  | Full | - | - | 3 | - | 3 | V |
| Drain-source On-resistance | $\mathrm{R}_{\mathrm{DS} \text { (on) }}$ | $\mathrm{I}_{\mathrm{S}}=1 \mathrm{~mA}, \mathrm{~V}_{\mathrm{D}}=+1.5 \mathrm{~V}$ | Room | 319 | - | 416 | - | 416 | $\Omega$ |
|  |  |  | Full | - | - | 478 | - | 453 |  |
| On-resistance match | $\Delta \mathrm{R}_{\mathrm{DS} \text { (on) }}$ | $\mathrm{I}_{\mathrm{S}}=1 \mathrm{~mA}, \mathrm{~V}_{\mathrm{D}}=+1.5 \mathrm{~V}$ | Room | 7 | - | 15 | - | 15 |  |
|  |  |  | Full | - | - | 17 | - | 16 |  |
| Switch off leakage current (for 14 pin TSSOP) | $\mathrm{I}_{\text {S(fff) }}$ | $\begin{gathered} \mathrm{V}+=3.3 \mathrm{~V}, \mathrm{~V}-=0 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{D}}=1 \mathrm{~V} / 3 \mathrm{~V}, \\ \mathrm{~V}_{\mathrm{S}}=3 \mathrm{~V} / 1 \mathrm{~V} \end{gathered}$ | Room | $\pm 0.001$ | -0.1 | 0.1 | -0.1 | 0.1 | nA |
|  |  |  | Full | - | -18 | 18 | -0.5 | 0.5 |  |
|  | $I_{\text {(off) }}$ |  | Room | $\pm 0.006$ | -0.1 | 0.1 | -0.1 | 0.1 |  |
|  |  |  | Full | - | -18 | 18 | -0.5 | 0.5 |  |
| Switch on leakage current (for 14 pin TSSOP) | $I_{\text {d(on) }}$ | $\begin{aligned} & \mathrm{V}_{+}=3.3 \mathrm{~V}, \mathrm{~V}-=0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{D}}=\mathrm{V}_{\mathrm{S}}=1 \mathrm{~V} / 3 \mathrm{~V} \end{aligned}$ | Room | $\pm 0.006$ | -0.1 | 0.1 | -0.1 | 0.1 |  |
|  |  |  | Full | - | -18 | 18 | -0.5 | 0.5 |  |
| Switch off leakage current (for 16 pin miniQFN) | $\mathrm{I}_{\text {(foff) }}$ | $\begin{gathered} \mathrm{V}+=3.3 \mathrm{~V}, \mathrm{~V}-=0 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{D}}=1 \mathrm{~V} / 3 \mathrm{~V}, \\ \mathrm{~V}_{\mathrm{S}}=3 \mathrm{~V} / 1 \mathrm{~V} \end{gathered}$ | Room | $\pm 0.001$ | -1 | 1 | -1 | 1 |  |
|  |  |  | Full | - | -18 | 18 | -2 | 2 |  |
|  | $I_{\text {(off) }}$ |  | Room | $\pm 0.006$ | -1 | 1 | -1 | 1 |  |
|  |  |  | Full | - | -18 | 18 | -2 | 2 |  |
| Switch on leakage current (for 16 pin miniQFN) | $\mathrm{I}_{\mathrm{D} \text { (on) }}$ | $\begin{gathered} \mathrm{V}_{+}=3.3 \mathrm{~V}, \mathrm{~V}-=0 \mathrm{~V}, \\ \mathrm{~V}_{\mathrm{D}}=\mathrm{V}_{\mathrm{S}}=1 \mathrm{~V} / 3 \mathrm{~V} \end{gathered}$ | Room | $\pm 0.006$ | -1 | 1 | -1 | 1 |  |
|  |  |  | Full | - | -18 | 18 | -2 | 2 |  |
| Digital Control |  |  |  |  |  |  |  |  |  |
| Input current, $\mathrm{V}_{\text {IN }}$ low | $1 / L$ | VIN A0, A1 and ENABLE under test $=0.6 \mathrm{~V}$ | Full | 0.000008 | -1 | 1 | -1 | 1 | $\mu \mathrm{A}$ |
| Input current, $\mathrm{V}_{\text {IN }}$ high | $\mathrm{IIH}^{\text {H }}$ | $\mathrm{V}_{\mathrm{IN}} \mathrm{A0}$, A1 and ENABLE under test $=1.4 \mathrm{~V}$ | Full | 0.000008 | -1 | 1 | -1 | 1 |  |
| Input capacitance | $\mathrm{C}_{\text {IN }}$ | $\mathrm{f}=1 \mathrm{MHz}$ | Room | 5 | - | - | - | - | pF |
| Dynamic Characteristics |  |  |  |  |  |  |  |  |  |
| Transition time | ${ }^{\text {t }}$ RANS | $\begin{gathered} \mathrm{V}_{\mathrm{S}(\mathrm{CLOSE)}}=3 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}(\mathrm{OPEN})}=0 \mathrm{~V}, \\ \mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} \end{gathered}$ | Room | 138 | - | 163 | - | 163 | ns |
|  |  |  | Full | - | - | 197 | - | 195 |  |
| Turn-on time | ton |  | Room | 95 | - | 117 | - | 117 |  |
|  |  |  | Full | - | - | 145 | - | 135 |  |
| Turn-off time | $\mathrm{t}_{\text {OFF }}$ |  | Room | 55 | - | 76 | - | 76 |  |
|  |  |  | Full | - | - | 98 | - | 90 |  |
| Break-before-make-time | $\mathrm{t}_{\text {BMM }}$ |  | Room | 58 | - | - | - | - |  |
|  |  |  | Full | - | 5 | - | 5 | - |  |
| Charge injection ${ }^{\text {e }}$ | $\mathrm{Q}_{\text {INJ }}$ | $\mathrm{C}_{\mathrm{L}}=1 \mathrm{nF}, \mathrm{R}_{\mathrm{GEN}}=0 \Omega, \mathrm{~V}_{\mathrm{GEN}}=0 \mathrm{~V}$ | Full | 0.01 | - | - | - | - | pC |
| Off-isolation ${ }^{\text {e }}$ | OIRR | $\mathrm{f}=10 \mathrm{MHz}, \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$ | Room | -66 | - | - | - | - | dB |
| Channel-to-channel crosstalk ${ }^{e}$ | $\mathrm{X}_{\text {TALK }}$ |  | Room | -64 | - | - | - | - |  |
| Bandwidth ${ }^{\text {e }}$ | BW | $\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$ | Room | 318 | - | - | - | - | MHz |
| Source off capacitance ${ }^{e}$ | $\mathrm{C}_{\text {S(ffi) }}$ | $\mathrm{f}=1 \mathrm{MHz}$ | Room | 4.6 | - | - | - | - | pF |
| Drain off capacitance ${ }^{\text {e }}$ | $\mathrm{C}_{\mathrm{D} \text { (off) }}$ |  | Room | 7.7 | - | - | - | - |  |
| Channel on capacitance ${ }^{e}$ | $\mathrm{C}_{\mathrm{D} \text { (on) }}$ |  | Room | 12.6 | - | - | - | - |  |

DG604E

| SPECIFICATIONS FOR SINGLE SUPPLY (V+ = $3 \mathrm{~V}, \mathrm{~V}-=0 \mathrm{~V}$ ) |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PARAMETER | SYMBOL | TEST CONDITIONS UNLESS OTHERWISE SPECIFIED $\mathrm{V}+=3 \mathrm{~V}, \mathrm{~V}-=0 \mathrm{~V}$ <br> $\mathrm{V}_{\text {IN AO }}$ A1, AND ENABLE $=1.4 \mathrm{~V}, 0.6 \mathrm{Va}$ | TEMP. ${ }^{\text {b }}$ | TYP. ${ }^{\text {c }}$ | $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ |  | $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ |  | UNIT |
|  |  |  |  |  | MIN. ${ }^{\text {d }}$ | MAX. ${ }^{\text {d }}$ | MIN. ${ }^{\text {d }}$ | MAX. ${ }^{\text {d }}$ |  |
| Power Supply |  |  |  |  |  |  |  |  |  |
| Power supply current | I+ | $\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$ or $\mathrm{V}_{+}$ | Room | 0.0001 | - | 0.5 | - | 0.5 | $\mu \mathrm{A}$ |
|  |  |  | Full | - | - | 1 | - | 1 |  |
| Negative supply current | I- |  | Room | -0.0001 | -0.5 | - | -0.5 | - |  |
|  |  |  | Full | - | -1 | - | -1 | - |  |
| Ground current | $\mathrm{I}_{\mathrm{GND}}$ |  | Room | -0.0001 | -0.5 | - | -0.5 | - |  |
|  |  |  | Full | - | -1 | - | -1 | - |  |

## Notes

a. Signals on $S_{x}, D_{x}$, or $I N_{x}$ exceeding $V+$ or $V$ - will be clamped by internal diodes. Limit forward diode current to maximum current ratings
b. All leads welded or soldered to PC board
c. Derate $5.6 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $70^{\circ} \mathrm{C}$
d. Derate $6.6 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $70^{\circ} \mathrm{C}$
e. Manual soldering with iron is not recommended for leadless components. The miniQFN-16 is a leadless package. The end of the lead terminal is exposed copper (not plated) as a result of the singulation process in manufacturing. A solder fillet at the exposed copper lip cannot be guaranteed and is not required to ensure adequate bottom side solder interconnection

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

TYPICAL CHARACTERISTICS $\left(25^{\circ} \mathrm{C}\right.$, unless otherwise noted)


On-Resistance vs. $\mathrm{V}_{\mathrm{D}}$ (Single Supply Voltage)


On-Resistance vs. Analog Voltage and Temperature


On-Resistance vs. Analog Voltage and Temperature


On-Resistance vs. $V_{D}$ (Dual Supply Voltage)


On-Resistance vs. Analog Voltage and Temperature


Insertion Loss, Off-Isolation, Crosstalk vs. Frequency

TYPICAL CHARACTERISTICS $\left(25^{\circ} \mathrm{C}\right.$, unless otherwise noted)


Leakage Current vs. Temperature


Leakage Current vs. Temperature


Switching Threshold vs. Supply Voltage


Leakage Current vs. Temperature


Charge Injection vs. Analog Voltage


Switching Threshold vs. Supply Voltage

DG604E

TYPICAL CHARACTERISTICS $\left(25^{\circ} \mathrm{C}\right.$, unless otherwise noted)


Supply Current vs. Switching Frequency


Supply Current vs. Temperature


Supply Current vs. Enable Input Voltage


Supply Current vs. Switching Frequency


Supply Current vs. Temperature


Switching Time vs. Temperature

## TEST CIRCUITS



Fig. 1 - Transition Time


Fig. 2 - Enable Switching Time


Fig. 3 - Break-Before-Make

DG604E

## TEST CIRCUITS



Fig. 4 - Charge Injection


Insertion Loss $=20 \log \frac{V_{\text {OUT }}}{V_{\text {IN }}}$
Fig. 5 - Insertion Loss


Off Isolation $=20 \log \frac{\mathrm{~V}_{\text {OUT }}}{\mathrm{V}_{\text {IN }}}$

Fig. 6 - Off-Isolation


Fig. 7 - Crosstalk


Fig. 8 - Source / Drain Capacitance

Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package / tape drawings, part marking, and reliability data, see www.vishay.com/ppg?75612.

Package Information

## Thin miniQFN16 Case Outline



Top view


Bottom view


| DIMENSIONS | MILLIMETERS ${ }^{(1)}$ |  |  | INCHES |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | MIN. | NOM. | MAX. | MIN. | NOM. | MAX. |
| A | 0.50 | 0.55 | 0.60 | 0.020 | 0.022 | 0.024 |
| A1 | 0 | - | 0.05 | 0 | - | 0.002 |
| A3 | $0.15 \text { ref. }$ |  |  | $0.006 \text { ref. }$ |  |  |
| b | 0.15 | 0.20 | 0.25 | 0.006 | 0.008 | 0.010 |
| D | 2.50 | 2.60 | 2.70 | 0.098 | 0.102 | 0.106 |
| e | 0.40 BSC |  |  | 0.016 BSC |  |  |
| E | 1.70 | 1.80 | 1.90 | 0.067 | 0.071 | 0.075 |
| L | 0.35 | 0.40 | 0.45 | 0.014 | 0.016 | 0.018 |
| L1 | 0.45 | 0.50 | 0.55 | 0.018 | 0.020 | 0.022 |
| $\mathrm{N}^{(3)}$ | 16 |  |  | 16 |  |  |
| $\mathrm{Nd}{ }^{(3)}$ | 4 |  |  | 4 |  |  |
| $\mathrm{Ne}{ }^{(3)}$ | 4 |  |  | 4 |  |  |

## Notes

${ }^{(1)}$ Use millimeters as the primary measurement.
${ }^{(2)}$ Dimensioning and tolerances conform to ASME Y14.5M. - 1994.
${ }^{(3)} \mathrm{N}$ is the number of terminals. Nd and Ne is the number of terminals in each D and E site respectively.
(4) Dimensions b applies to plated terminal and is measured between 0.15 mm and 0.30 mm from terminal tip.
${ }^{(5)}$ The pin 1 identifier must be existed on the top surface of the package by using identification mark or other feature of package body.
${ }^{(6)}$ Package warpage max. 0.05 mm .

## ECN: T16-0226-Rev. B, 09-May-16

DWG: 6023

14L TSSOP



## RECOMMENDED MINIMUM PADS FOR MINI QFN 16L



Mounting Footprint
Dimensions in mm (inch)

## Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

