

New Product

Vishay Siliconix

N-Channel 50-V (D-S), 175°C MOSFET

PRODUCT SUMMARY						
V _{(BR)DSS} (V)	r _{DS(on)} (Ω)	I _D (A)				
50	0.006	75				

ABSOLUTE MAXIMUM RATINGS (T_C = 25°C UNLESS OTHERWISE NOTED) Parameter Symbol Limit Unit V Gate-Source Voltage V_{GS} ± 20 75^a $T_C = 25^{\circ}C$ Continuous Drain Current I_D (T_J = 175°C) $T_{C} = 125^{\circ}C$ 70 Α Pulsed Drain Current 240 I_{DM} Avalanche Current I_{AR} 75 Repetitive Avalanche Energy^b L = 0.1 mH 280 E_{AR} mJ $T_C = 25^{\circ}C$ (TO-220AB and TO-263) 250^c **Power Dissipation** P_D w T_A = 25°C (TO-263)^d 3.7 °C Operating Junction and Storage Temperature Range -55 to 175 T_J, T_{stg}

THERMAL RESISTANCE RATINGS								
Parameter		Symbol	Limit					
Junction-to-Ambient	PCB Mount (TO-263) ^d		40					
	Free Air (TO-220AB)	R _{thJA}	62.5	°C/W				
Junction-to-Case		R _{thJC}	0.6					

Notes

a. Package limited.

b. Duty cycle $\leq 1\%$.

d. When mounted on 1" square PCB (FR-4 material).

Document Number: 72633 S-32561—Rev. A, 15-Dec-03

SUP/SUB75N05-06A

Vishay Siliconix

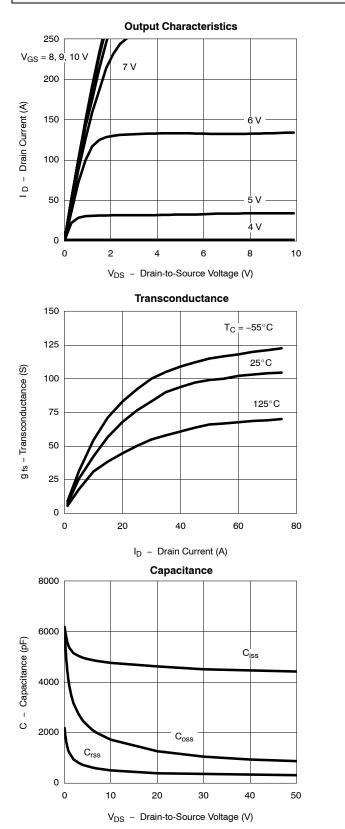
New Product

Parameter	Symbol	Test Condition	Min	Тур	Мах	Unit
Static						•
Drain-Source Breakdown Voltage	V _{(BR)DSS}	V_{GS} = 0 V, I_D = 250 μ A	50			- v
Gate Threshold Voltage	V _{GS(th)}	$V_{DS}=V_{GS},I_{D}=250\;\mu A$	2.0		4.0	
Gate-Body Leakage	I _{GSS}	V_{DS} = 0 V, V_{GS} = ± 20 V			±100	nA
Zero Gate Voltage Drain Current		V_{DS} = 50 V, V_{GS} = 0 V			1	μΑ
	I _{DSS}	V_{DS} = 50 V, V_{GS} = 0 V, T_{J} = 125°C			50	
		V_{DS} = 50 V, V_{GS} = 0 V, T_J = $~175^{\circ}C$			150	
On-State Drain Current ^a	I _{D(on)}	$V_{DS} = 5 \text{ V}, V_{GS} = 10 \text{ V}$	120			Α
Drain-Source On-State Resistance ^a		V_{GS} = 10 V, I _D = 75 A		0.005	0.006	Ω
	r _{DS(on)}	V_{GS} = 10 V, I _D = 75 A, T _J = 125°C			0.010	
		V_{GS} = 10 V, I _D = 75 A, T _J = 175°C			0.012	
Forward Transconductance ^a		$V_{DS} = 15 \text{ V}, \text{ I}_{D} = 60 \text{ A}$	30			S
Dynamic ^b						
Input Capacitance	C _{iss}	V _{GS} = 0 V, V _{DS} = 25 V, f = 1 MHz		4500		pF
Output Capacitance	C _{oss}			1100		
Reverse Transfer Capacitance	C _{rss}			360		
Total Gate Charge ^c	Qg	$V_{DS} = 25 V_{,} V_{GS} = 10 V, I_{D} = 75 A$		85	120	nC
Gate-Source Charge ^c	Q _{gs}			25		
Gate-Drain Charge ^c	Q _{gd}			25		
Gate Resistance	Rg	f = 1.0 MHz		3		Ω
Turn-On Delay Time ^c	t _{d(on)}	$\begin{array}{l} V_{DD}$ = 25 V, R_L = 0.33 $\Omega \\ I_D \cong \ 75$ A, V_{GEN} = 10 V, R_g = 2.5 $\Omega \end{array}$		20	40	- ns
Rise Time ^c	t _r			20	100	
Turn-Off Delay Time ^c	t _{d(off)}			50	100	
Fall Time ^c	t _f			20	40	
Source-Drain Diode Ratings a	nd Characteristic	cs (T _C = 25°C) ^b				I
Continuous Current	IS			1	75	Ι.
Pulsed Current	I _{SM}		1		200	A
Forward Voltage ^a	V _{SD}	$I_{\rm F}$ = 75 A , $V_{\rm GS}$ = 0 V	1	1.0	1.4	V
Reverse Recovery Time	t _{rr}	I _F = 75 A, di/dt = 100 A/μs	1	65	120	ns
Peak Reverse Recovery Current	I _{RM(REC)}			5	8	Α
Reverse Recovery Charge	Q _{rr}			0.16	0.48	μC

Notes

a. Pulse test: pulse width \leq 300 μ sec, duty cycle \leq 2%.

Guaranteed by design, not subject to production testing.
Independent of operating temperature.


SUP/SUB75N05-06A

Transfer Characteristics

New Product

Vishay Siliconix

TYPICAL CHARACTERISTICS (25°C UNLESS NOTED)

200 150 I D - Drain Current (A) 100 50 $T_C = 125^{\circ}C$ 25°C –55°C 0 0 1 2 3 4 5 6 7 V_{GS} - Gate-to-Source Voltage (V) **On-Resistance vs. Drain Current** 0.008 0.006 r_{DS(on)} – On-Resistance (Ω) V_{GS} = 10 V $V_{GS} = 20 V$ 0.004 0.002 0.000 0 20 40 60 80 100 120 I_D - Drain Current (A) Gate Charge 20 V_{DS} = 25 V I_D = 75 A VGS - Gate-to-Source Voltage (V) 16 12 8 4 0 0 25

50

75

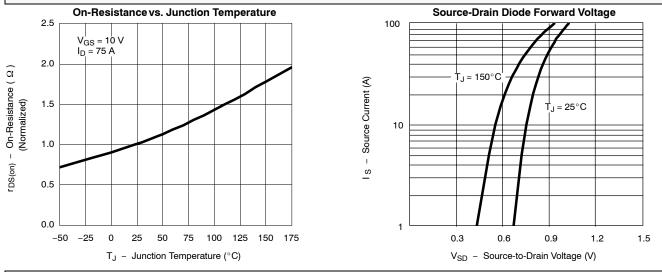
Qg - Total Gate Charge (nC)

100

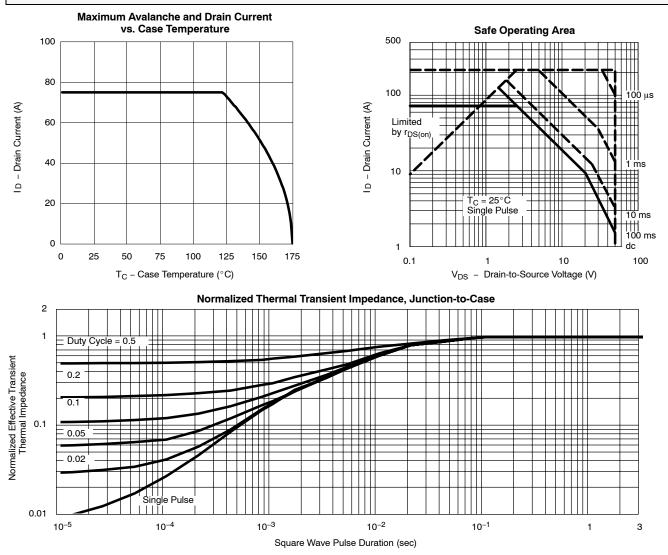
125

150

Document Number: 72633 S-32561-Rev. A, 15-Dec-03 175


SUP/SUB75N05-06A

Vishay Siliconix


New Product

TYPICAL CHARACTERISTICS (25°C UNLESS NOTED)

THERMAL RATINGS

www.vishay.com

Vishay

Disclaimer

All product specifications and data are subject to change without notice.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained herein or in any other disclosure relating to any product.

Vishay disclaims any and all liability arising out of the use or application of any product described herein or of any information provided herein to the maximum extent permitted by law. The product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein, which apply to these products.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications unless otherwise expressly indicated. Customers using or selling Vishay products not expressly indicated for use in such applications do so entirely at their own risk and agree to fully indemnify Vishay for any damages arising or resulting from such use or sale. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

Product names and markings noted herein may be trademarks of their respective owners.