

Vishay Semiconductors

"High Side Chopper" IGBT SOT-227 (Ultrafast IGBT), 50 A

PRIMARY CHARACTERISTICS					
V_{CES}	1200 V				
I _C DC	50 A at 92 °C				
V _{CE(on)} typical at 50 A, 25 °C	3.3 V				
Speed	8 kHz to 60 kHz				
Package	SOT-227				
Circuit configuration	High side chopper				

FEATURES

- NPT Gen 5 IGBT technology
- Square RBSOA
- HEXFRED® clamping diode
- Positive V_{CE(on)} temperature coefficient
- Fully isolated package
- Very low internal inductance (≤ 5 nH typical)
- Industry standard outline
- UL approved file E78996

• Material categorization: for definitions of compliance please see www.vishav.com/doc?99912

BENEFITS

- Designed for increased operating efficiency in power conversion: UPS, SMPS, welding, induction heating
- Easy to assemble and parallel
- Direct mounting on heatsink
- Plug-in compatible with other SOT-227 packages
- Low EMI, requires less snubbing

ABSOLUTE MAXIMUM RATINGS					
PARAMETER	SYMBOL	TEST CONDITIONS	MAX.	UNITS	
Collector to emitter voltage	V _{CES}		1200	V	
Continuous collector current	_	T _C = 25 °C	84		
Continuous collector current	I _C	T _C = 80 °C	57	İ	
Pulsed collector current	I _{CM}		150]	
Clamped inductive load current	I_{LM}		150	Α	
Diode continuous forward current	I _F	T _C = 25 °C	87		
		T _C = 80 °C	59		
Single pulse forward current	I _{FSM}	10 ms sine or 6 ms rectangular pulse, T _J = 25 °C	310]	
Gate to emitter voltage	V_{GE}		± 20	V	
Power dissipation, IGBT	В	T _C = 25 °C	431		
	P_{D}	T _C = 80 °C	242	14/	
Power dissipation, diode	0	T _C = 25 °C	338	- W	
	P_{D}	T _C = 80 °C	190		
RMS isolation voltage	V _{ISOL}	Any terminal to case, t = 1 min	2500	V	

Revision: 12-Apr-2021 Document Number: 95855

PARAMETER	SYMBOL	TEST CONDITIONS	MIN.	TYP.	MAX.	UNITS	
Collector to emitter breakdown voltage	V _{BR(CES)}	$V_{GE} = 0 \text{ V}, I_{C} = 500 \mu\text{A}$	1200	-	-		
		V _{GE} = 15 V, I _C = 25 A - 2		2.5	2.8		
Collector to amittar valtage	V	V _{GE} = 15 V, I _C = 50 A	-	3.3	-	.,	
Collector to emitter voltage	V _{CE(on)}	V _{GE} = 15 V, I _C = 25 A, T _J = 125 °C	-	3.0	-	V	
		V _{GE} = 15 V, I _C = 50 A, T _J = 125 °C	-	4.03	-		
Gate threshold voltage	V _{GE(th)}	$V_{CE} = V_{GE}, I_{C} = 500 \mu A$	4.0	5.5	7.1		
Temperature coefficient of threshold voltage	$V_{GE(th)}/\Delta T_J$	V _{CE} = V _{GE} , I _C = 1 mA (25 °C to 125 °C)	-	-12.9	-	mV/°C	
Called a decided and a second	I _{CES}	V _{GE} = 0 V, V _{CE} = 1200 V	-	8	50	μΑ	
Collector to emitter leakage current		V _{GE} = 0 V, V _{CE} = 1200 V, T _J = 125 °C	-	0.15	-	mA	
Diode reverse breakdown voltage	V_{BR}	I _R = 1 mA	1200	-	-	V	
	V _{FM}	I _F = 25 A, V _{GE} = 0 V	-	2.11	2.42	2.42 - - V	
Diada famuard valtaga dran		I _F = 50 A, V _{GE} = 0 V	-	2.72	-		
Diode forward voltage drop		I _F = 25 A, V _{GE} = 0 V, T _J = 125 °C	-	2.04	-		
		I _F = 50 A, V _{GE} = 0 V, T _J = 125 °C - 2.83		-			
Diada vayaraa laakaga ayyyant	I _{RM}	V _R = 1200 V	-	4	50	μΑ	
Diode reverse leakage current		T _J = 125 °C, V _R = 1200 V	-	0.8	-	mA	
Gate to emitter leakage current	I _{GES}	$V_{GF} = \pm 20 \text{ V}$	-	-	± 200	nA	

SWITCHING CHARACTERISTICS (T _J = 25 °C unless otherwise specified)							
PARAMETER	SYMBOL	TEST CONDITIONS		MIN.	TYP.	MAX.	UNITS
Total gate charge (turn-on)	Qg			-	400	-	
Gate to emitter charge (turn-on)	Q _{ge}	$I_C = 50 \text{ A}, V_{CC} = 600 \text{ V}, $	/ _{GE} = 15 V	-	43	-	nC
Gate to collector charge (turn-on)	Q _{gc}			-	187	-	
Turn-on switching loss	Eon	I _C = 50 A, V _{CC} = 600 V,		-	1.87	-	
Turn-off switching loss	E _{off}	$V_{GE} = 15 \text{ V}, R_g = 4.7 \Omega,$		-	0.83	-	
Total switching loss	E _{tot}	L = 500 μH, T _J = 25 °C		-	2.7	-	mJ
Turn-on switching loss	Eon]	-	3.43	-	
Turn-off switching loss	E _{off}	inc	Energy losses include tail and diode recovery	-	1.29	-	
Total switching loss	E _{tot}			-	4.72	-	
Turn-on delay time	t _{d(on)}			-	147	-	ns
Rise time	t _r			-	35	-	
Turn-off delay time	t _{d(off)}			-	186	-	
Fall time	t _f			-	119	-	
Reverse bias safe operating area	RBSOA	T_J = 150 °C, I_C = 150 A, R_g = 22 Ω , V_{GE} = 15 V to 0 V, V_{CC} = 900 V, V_P = 1200 V			Fullsquare	1	
Diode reverse recovery time	t _{rr}			-	129	-	ns
Diode peak reverse current	I _{rr}	I _F = 50 A, dI _F /dt = 200 A/μs, V _R = 200 V		-	11	-	Α
Diode recovery charge	Q _{rr}			-	710	-	nC
Diode reverse recovery time	t _{rr}	$I_F = 50 \text{ A}, \text{ dI}_F/\text{dt} = 200 \text{ A/}\mu\text{s}, \text{ V}_R = 200 \text{ V},$ $T_J = 125 ^{\circ}\text{C}$		-	208	-	ns
Diode peak reverse current	I _{rr}			-	17	-	Α
Diode recovery charge	Q _{rr}			-	1768	-	nC

Revision: 12-Apr-2021 2 Document Number: 95855

Vishay Semiconductors

THERMAL AND MECHANICAL SPECIFICATIONS							
PARAMETER		SYMBOL		MIN.	TYP.	MAX.	UNITS
Junction and storage ter	nperature range	T _J , T _{Stg}		-40	-	150	°C
IGBT		В		-	-	0.29	
Junction to case Diode	Diode	R _{thJC}		-	-	0.37	°C/W
Case to heatsink		R _{thCS}	Flat, greased surface	-	0.05	-	
Weight				-	30	-	g
Mounting torque			Torque to terminal	-	ı	1.1 (9.7)	Nm (lbf.in)
			Torque to heatsink	-	=	1.8 (15.9)	Nm (lbf.in)
Case style				SOT-227			

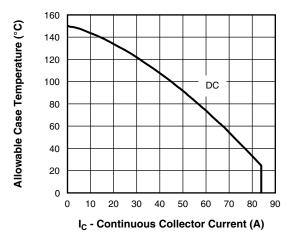


Fig. 1 - Maximum DC IGBT Collector Current vs.

Case Temperature

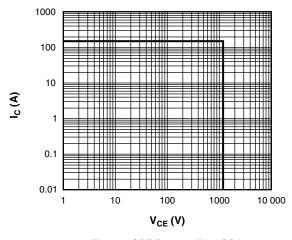


Fig. 2 - IGBT Reverse Bias SOA $T_J = 150$ °C, $V_{GE} = 15$ V

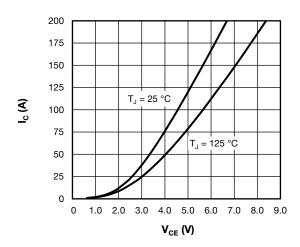


Fig. 3 - Typical IGBT Output Characteristics, $V_{\text{GE}} = 15V$

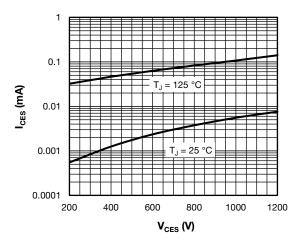


Fig. 4 - Typical IGBT Zero Gate Voltage Collector Current

Vishay Semiconductors

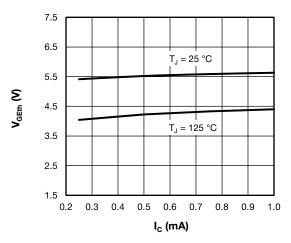
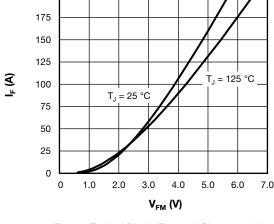



Fig. 5 - Typical IGBT Threshold Voltage

200

Fig. 8 - Typical Diode Forward Characteristics

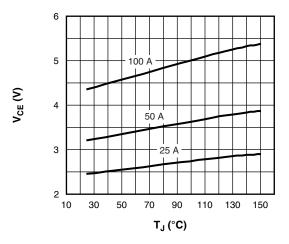


Fig. 6 - Typical IGBT Collector to Emitter Voltage vs. Junction Temperature, $V_{GE} = 15 \text{ V}$

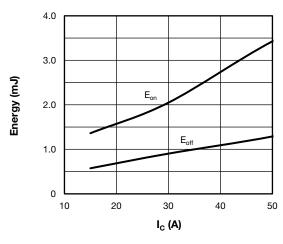


Fig. 9 - Typical IGBT Energy Losses vs. I_C T_J = 125 °C, V_{CC} = 600 V, V_{GE} = 15 V, L = 500 $\mu H, \, R_g = 4.7 \; \Omega$

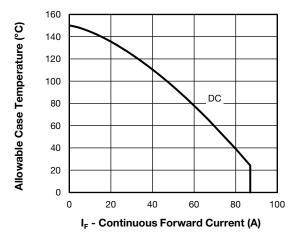


Fig. 7 - Maximum Diode Continuous Forward Current vs. Case Temperature

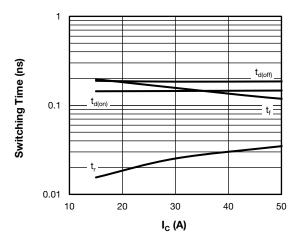


Fig. 10 - Typical IGBT Switching Time vs. I_C T_J = 125 °C, V_{CC} = 600 V, V_{GE} = 15 V, L = 500 $\mu H,~R_g$ = 4.7 Ω

Revision: 12-Apr-2021 4 Document Number: 95855

Vishay Semiconductors

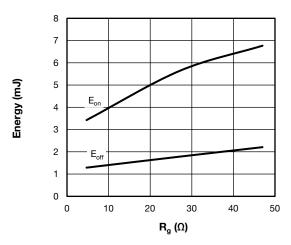


Fig. 11 - Typical IGBT Energy Losses vs. R_g T_J = 125 °C, I_C = 50 A, V_{CC} = 600 V, V_{GE} = 15 V, L = 500 μH

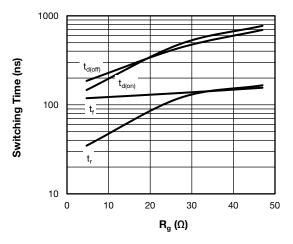


Fig. 12 - Typical IGBT Switching Time vs. R_g T_J = 125 °C, I_C = 50 A, V_{CC} = 600 V, V_{GE} = 15 V, L = 500 μH

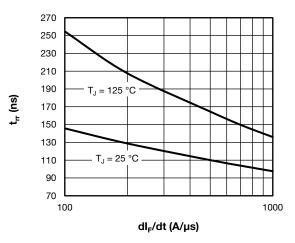


Fig. 13 - Typical t_{rr} Diode vs. dI_F/dt $V_B = 200 \text{ V}, I_F = 50 \text{ A}$

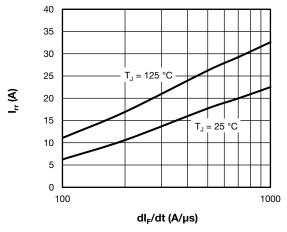


Fig. 14 - Typical I_{rr} Diode vs. dI_F/dt $V_R = 200$ V, $I_F = 50$ A

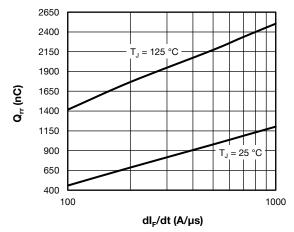


Fig. 15 - Typical Q_{rr} Diode vs. dI_F/dt , $V_R = 200 \text{ V}$, $I_F = 50 \text{ A}$

Revision: 12-Apr-2021 5 Document Number: 95855

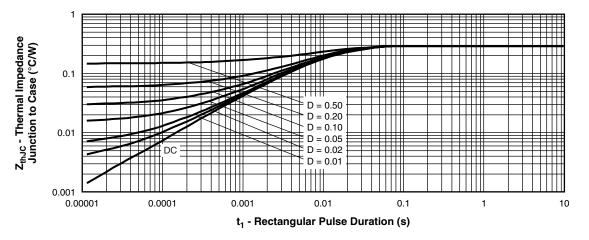


Fig. 16 - Maximum Thermal Impedance Z_{thJC} Characteristics (IGBT)

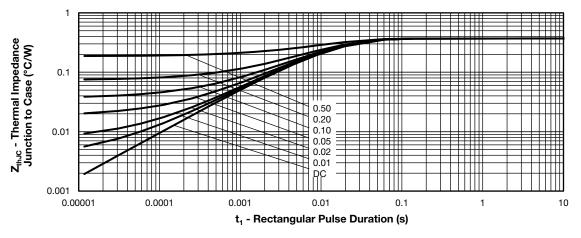
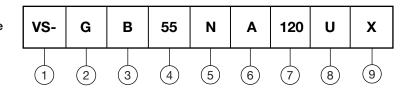



Fig. 17 - Maximum Thermal Impedance Z_{thJC} Characteristics (Diode)

ORDERING INFORMATION TABLE

Device code

Vishay Semiconductors product

Insulated gate bipolar transistor (IGBT)

3 - B = IGBT Gen 5

4 - Current rating (55 = 50 A)

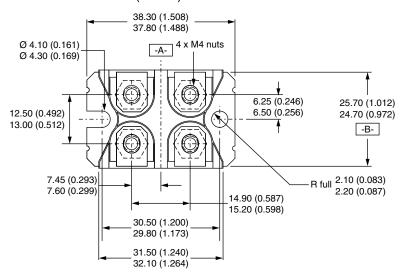
5 - Circuit configuration (N = high side chopper)

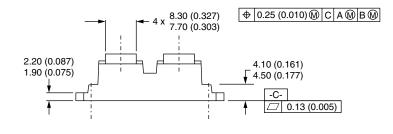
6 - Package indicator (A = SOT-227)

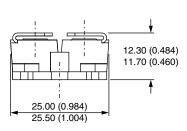
7 - Voltage rating (120 = 1200 V)

Speed / type (U = ultrafast IGBT)

9 - Diode (X = HEXFRED® diode)

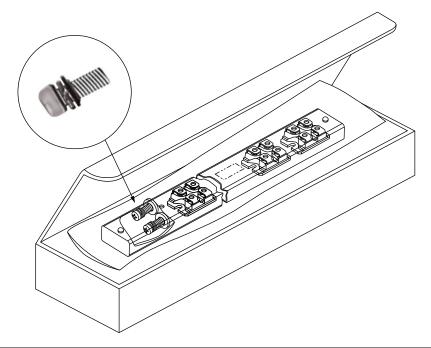

CIRCUIT CONFIGURATION				
CIRCUIT	CIRCUIT CONFIGURATION CODE	CIRCUIT DRAWING		
High side chopper	N	300000000000000000000000000000000000000	Lead Assignment 4 1 2	


LINKS TO RELATED DOCUMENTS				
Dimensions <u>www.vishay.com/doc?95423</u>				
Packaging information	www.vishay.com/doc?95425			


Revision: 12-Apr-2021 7 Document Number: 95855

Vishay Semiconductors

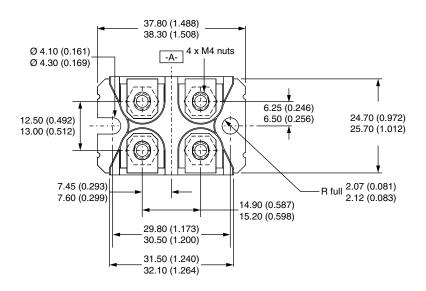
DIMENSIONS in millimeters (inches)

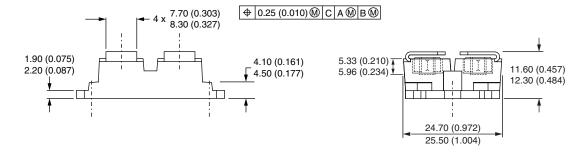


Note

· Controlling dimension: millimeter

PACKAGING INFORMATION




Revision: 12-Apr-2021 8 Document Number: 95855

SOT-227 Generation 2

DIMENSIONS in millimeters (inches)

Note

• Controlling dimension: millimeter

Revision: 19-May-2020 1 Document Number: 95423

Legal Disclaimer Notice

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

© 2021 VISHAY INTERTECHNOLOGY, INC. ALL RIGHTS RESERVED