

Thyristor/Diode and Thyristor/Thyristor (ADD-A-PAKTM Generation 5 Power Modules), 45/60 A

ADD-A-PAKTM

PRODUCT SUMMARY	1
$I_{T(AV)}$ or $I_{F(AV)}$	45/60 A

MECHANICAL DESCRIPTION

The Generation 5 of ADD-A-PAKTM modules combine the excellent thermal performance obtained by the usage of Direct Bonded Copper substrate with superior mechanical ruggedness, thanks to the insertion of a solid copper baseplate at the bottom side of the device. The Cu baseplate allows an easier mounting on the majority of heatsink with increased tolerance of surface roughness and improved thermal spread. The Generation 5 of AAP modules is manufactured without hard mold, eliminating in this way any possible direct stress on the leads.

The electrical terminals are secured against axial pull-out: they are fixed to the module housing via a click-stop feature already tested and proved as reliable on other Vishay HPP modules.

FEATURES

- · High voltage
- · Industrial standard package
- · Thick copper baseplate
- UL E78996 approved
- 3500 V_{RMS} isolating voltage
- · Totally lead (Pb)-free
- · Designed and qualified for industrial level

BENEFITS

- Up to 1600 V
- Fully compatible TO-240AA
- · High surge capability
- · Easy mounting on heatsink
- Al₂0₃ DBC insulator
- · Heatsink grounded

ELECTRICAL DESCRIPTION

These modules are intended for general purpose high voltage applications such as high voltage regulated power supplies, lighting circuits, temperature and motor speed control circuits, UPS and battery charger.

MAJOR RATINGS AND CHARACTERISTICS							
SYMBOL	CHARACTERISTICS	VSK.41 VSK.56		UNITS			
I _{T(AV)} or I _{F(AV)}	85 °C	45	60				
I _{O(RMS)}	As AC switch	100	_				
I _{TSM,}	50 Hz	850	1310	A			
I _{FSM}	60 Hz	890	1370				
l ² t	50 Hz	3.61	8.50	kA ² s			
1-1	60 Hz	3.30	7.82	KA-S			
I ² √t		36.1 85.0		kA²√s			
V _{RRM}	Range	400 to 1600 V					
T _{Stg}		- 40 to 125 °C					
T _J							

VSK.41, .56..PbF Series

Vishay High Power Products

Thyristor/Diode and Thyristor/Thyristor (ADD-A-PAKTM Generation 5 Power Modules), 45/60 A

ELECTRICAL SPECIFICATIONS

VOLTAGE RATINGS									
TYPE NUMBER	VOLTAGE CODE	V _{RRM} , MAXIMUM REPETITIVE PEAK REVERSE VOLTAGE V	V _{RSM} , MAXIMUM NON-REPETITIVE PEAK REVERSE VOLTAGE V	V _{DRM} , MAXIMUM REPETITIVE PEAK OFF-STATE VOLTAGE, GATE OPEN CIRCUIT V	I _{RRM,} I _{DRM} AT 125 °C mA				
	04	400	500	400					
	06	600	700	600					
	08	800	900	800					
VSK.41/.56	10	1000	1100	1000	15				
	12	1200	1300	1200					
	14	1400	1500	1400					
	16	1600	1700	1600					

ON-STATE CONDUCTION									
PARAMETER	SYMBOL		TEST COND	VSK.41	VSK.56	UNITS			
Maximum average on-state current (thyristors)	I _{T(AV)}	180° conduction, half sine wave,				60			
Maximum average forward current (diodes)	I _{F(AV)}	T _C = 85 °C			45	00			
Maximum continuous RMS on-state current, as AC switch	I _{O(RMS)}		or •	I _(RMS)	100	135			
		t = 10 ms	No voltage		850	1310	Α		
		t = 8.3 ms	reapplied	Sinusoidal half wave,	890	1370			
Maximum peak, one-cycle non-repetitive on-state	I _{TSM} or	t = 10 ms	100 % V _{RRM}	initial $T_J = T_J$ maximum	715	1100			
or forward current	I _{FSM}	t = 8.3 ms	reapplied		750	1150			
	-1 OW	t = 10 ms	13 - 20 0		940	1450			
		t = 8.3 ms			985	1520			
Mariana 121 (aut. aire		t = 10 ms	No voltage	Initial $T_J = T_J maximum$	3.61	8.56	kA ² s		
		t = 8.3 ms	reapplied		3.30	7.82			
	l ² t	t = 10 ms	100 % V _{RRM} reapplied		2.56	6.05			
Maximum I ² t for fusing	121	t = 8.3 ms			2.33	5.53			
		t = 10 ms	T _J = 25 °C, no voltage reapplied		4.42	10.05			
		t = 8.3 ms	1 _J = 25 °C, no	o voltage reapplied	4.03	9.60			
Maximum I²√t for fusing	l 2√t (1)	t = 0.1 to 10 m	s, no voltage re	applied	36.1	85.6	kA ² √s		
Manipara de la contra dela contra de la contra del la contra del la contra de la contra del la contra del la contra de la contra de la contra del la contra del la contra de la contra del la contr	1/ (2)	Low level (3)	T T		0.88	0.85	V		
Maximum value or threshold voltage	V _{T(TO)} (2)	High level (4)	$T_J = T_J \text{ maxir}$	num	0.91	0.88	V		
Maximum value of on-state	r _t (2)	Low level (3)	T T		5.90	3.53	0		
slope resistance	r _t (2)	High level (4)	$T_J = T_J \text{ maxir}$	num	5.74	3.41	mΩ		
Maximum peak on-state or	V_{TM}	$I_{TM} = \pi \times I_{T(AV)}$	$= \pi \times I_{T(AV)}$		1.01	1.54	V		
forward voltage	V _{FM}	$I_{FM} = \pi \times I_{F(AV)}$ $I_{FM} = \pi \times I_{F(AV)}$ $T_{J} = 25 \text{ °C}$		1.81	1.54	V			
Maximum non-repetitive rate of rise of turned on current	dl/dt	$T_J = 25$ °C, from 0.67 V_{DRM} , $I_{TM} = \pi \times I_{T(AV)}$, $I_g = 500$ mA, $t_r < 0.5$ μ s, $t_p > 6$ μ s				$T_{J} = 25 ^{\circ}\text{C}$, from 0.67 V_{DRM} ,		50	A/μs
Maximum holding current	I _H	T _J = 25 °C, anode supply = 6 V, resistive load, gate open circuit				00	mA		
Maximum latching current	ΙL	T _J = 25 °C, and	$T_J = 25$ °C, anode supply = 6 V, resistive load 400						

Notes

www.vishay.com

 $^{^{(1)}~}I^2t$ for time $t_x=I^2\sqrt{t}~x~\sqrt{t_x}$

 $^{^{(3)}}$ 16.7 % x π x I_{AV} < I < π x I_{AV}

⁽²⁾ Average power = $V_{T(TO)} \times I_{T(AV)} + r_t \times (I_{T(RMS)})^2$

 $^{^{(4)}}$ $I > \pi$ \times I_{AV}

Thyristor/Diode and Thyristor/Thyristor Vishay High Power Products (ADD-A-PAKTM Generation 5 Power Modules), 45/60 A

TRIGGERING								
PARAMETER	SYMBOL	TEST CO	NDITIONS	VSK.41	VSK.56	UNITS		
Maximum peak gate power	P _{GM}			1	0	W		
Maximum average gate power	P _{G(AV)}			2	.5	VV		
Maximum peak gate current	I _{GM}			2	.5	Α		
Maximum peak negative gate voltage	- V _{GM}				0	- V		
		T _J = - 40 °C		4.0				
Maximum gate voltage required to trigger	V_{GT}	T _J = 25 °C	Anode supply = 6 V	2.5				
		T _J = 125 °C	Tesistive load	1.	.7			
		T _J = - 40 °C		27	70			
Maximum gate current required to trigger	I _{GT}	T _J = 25 °C	Anode supply = 6 V resistive load	150		mA		
		T _J = 125 °C	Tesistive load	8	0			
Maximum gate voltage that will not trigger	V_{GD}	T _J = 125 °C, rated V _{DRN}	0.:	25	V			
Maximum gate current that will not trigger	I _{GD}	T _J = 125 °C, rated V _{DRM} applied 6			3	mA		

BLOCKING								
PARAMETER	SYMBOL	TEST CONDITIONS	VSK.41	VSK.56	UNITS			
Maximum peak reverse and off-state leakage current at V _{RRM} , V _{DRM}	I _{RRM,} I _{DRM}	T _J = 125 °C, gate open circuit	1	5	mA			
RMS insulation voltage	V _{INS} 50 Hz, circuit to base, all terminals shorted 2500 (1 min) 3500 (1 s)		,	٧				
Maximum critical rate of rise of off-state voltage	dV/dt (1)	T_J = 125 °C, linear to 0.67 V_{DRM}	50	00	V/µs			

Note

 $^{^{(1)}}$ Available with dV/dt = 1000 V/ms, to complete code add S90 i.e. VSKT41/16AS90

THERMAL AND MECHANICAL SPECIFICATIONS								
PARAMETER		SYMBOL	TEST CONDITIONS	VSK.41	VSK.56	UNITS		
Junction operating and storage temperature range		T _J , T _{Stg}		- 40 to	o 125	°C		
Maximum internal thermal resistance, junction to case per module		R _{thJC}	DC operation	0.23	0.20	K/W		
Typical thermal resistance, case to heatsink		R _{thCS}	Mounting surface flat, smooth and greased	0.1				
Mounting torque ± 10 % busbar			A mounting compound is recommended and the torque should be rechecked after a period of 3		5			
			hours to allow for the spread of the compound.	3	8	Nm		
Approximate weight				11	10	g		
				4	1	oz.		
Case style			JEDEC	-	ГО-240АА			

△R CONDUCTION PER JUNCTION													
DEVICES	SINE HALF WAVE CONDUCTION RECTANGULAR WAVE CONDUCTION								ON	LIMITO			
DEVICES	180°	120°	90°	60°	30°	180°	120°	90°	60°	30°	UNITS		
VSK.41	0.11	0.13	0.17	0.23	0.34	0.09	0.14	0.18	0.23	0.34	°C/W		
VSK.56	0.09	0.11	0.13	0.18	0.27	0.07	0.11	0.14	0.19	0.28	J C/VV		

Note

[•] Table shows the increment of thermal resistance R_{thJC} when devices operate at different conduction angles than DC

Thyristor/Diode and Thyristor/Thyristor (ADD-A-PAKTM Generation 5 Power Modules), 45/60 A

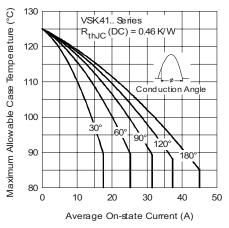


Fig. 1 - Current Ratings Characteristics

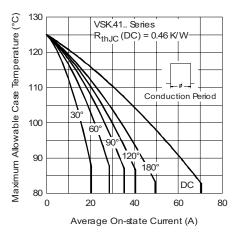


Fig. 2 - Current Ratings Characteristics

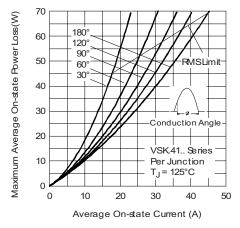


Fig. 3 - On-State Power Loss Characteristics

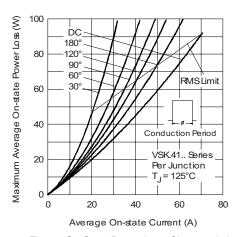


Fig. 4 - On-State Power Loss Characteristics

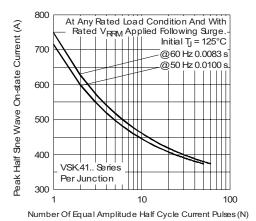


Fig. 5 - Maximum Non-Repetitive Surge Current

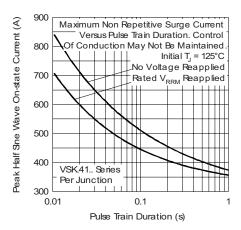


Fig. 6 - Maximum Non-Repetitive Surge Current

www.vishay.com

Thyristor/Diode and Thyristor/Thyristor (ADD-A-PAKTM Generation 5 Power Modules), 45/60 A

Vishay High Power Products

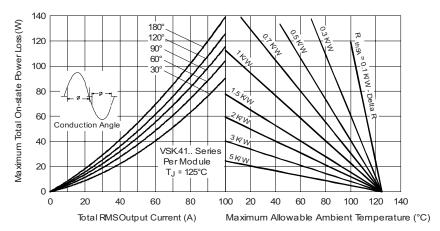


Fig. 7 - On-State Power Loss Characteristics

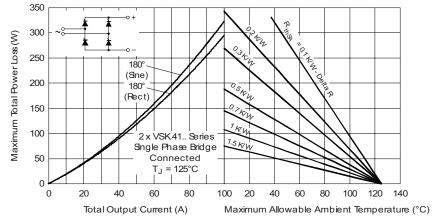


Fig. 8 - On-State Power Loss Characteristics

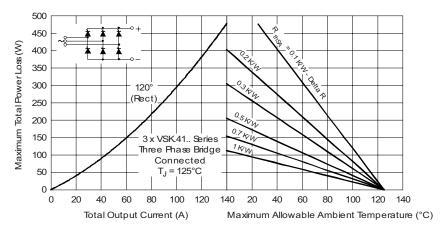


Fig. 9 - On-State Power Loss Characteristics

Thyristor/Diode and Thyristor/Thyristor (ADD-A-PAKTM Generation 5 Power Modules), 45/60 A

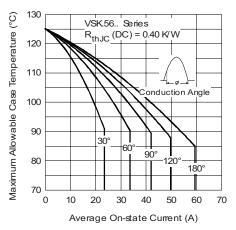


Fig. 10 - Current Ratings Characteristics

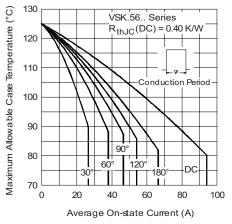


Fig. 11 - Current Ratings Characteristics

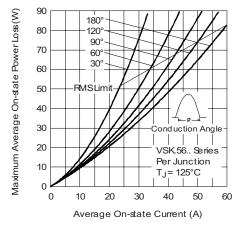


Fig. 12 - On-State Power Loss Characteristics

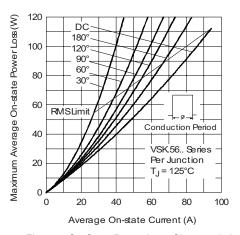


Fig. 13 - On-State Power Loss Characteristics

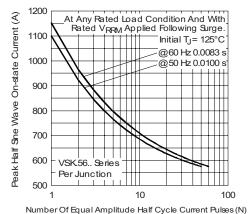


Fig. 14 - Maximum Non-Repetitive Surge Current

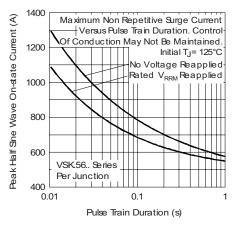


Fig. 15 - Maximum Non-Repetitive Surge Current

Thyristor/Diode and Thyristor/Thyristor (ADD-A-PAKTM Generation 5 Power Modules), 45/60 A

Vishay High Power Products

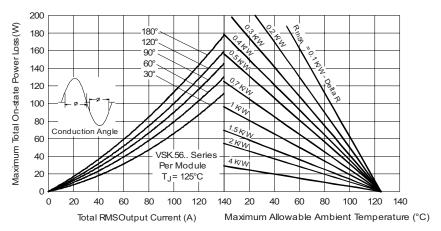


Fig. 16 - On-State Power Loss Characteristics

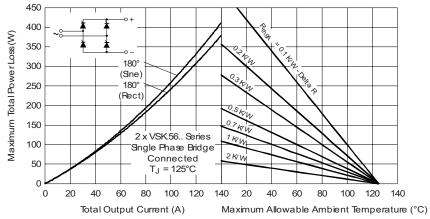


Fig. 17 - On-State Power Loss Characteristics

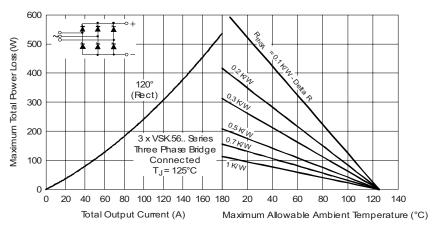


Fig. 18 - On-State Power Loss Characteristics

Thyristor/Diode and Thyristor/Thyristor (ADD-A-PAKTM Generation 5 Power Modules), 45/60 A

200 A

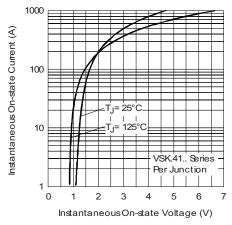
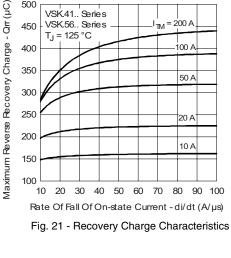



Fig. 19 - On-State Voltage Drop Characteristics

VSK.41.. Series

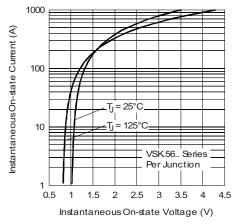


Fig. 20 - On-State Voltage Drop Characteristics

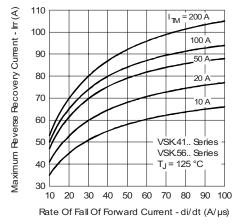


Fig. 22 - Recovery Current Characteristics

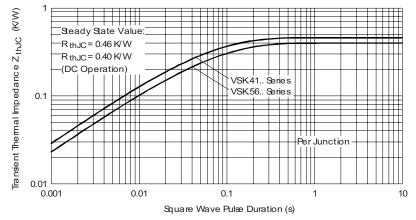


Fig. 23 - Thermal Impedance ZthJC Characteristics

Thyristor/Diode and Thyristor/Thyristor (ADD-A-PAKTM Generation 5 Power Modules), 45/60 A

Vishay High Power Products

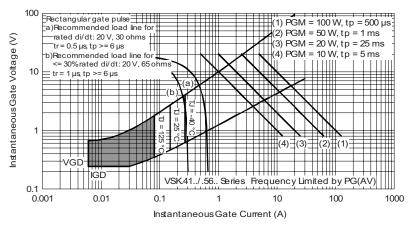
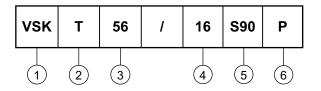



Fig. 24 - Gate Characteristics

ORDERING INFORMATION TABLE

Device code

1 - Module type

2 - Circuit configuration (see end of datasheet)

3 - Current code (1)

4 - Voltage code (see Voltage Ratings table)

5 - dV/dt code: S90 = dV/dt 1000 V/µs
No letter = dV/dt 500 V/µs

P = Lead (Pb)-free

(1) Available with no auxiliary cathode

(for details see dimensions - link at the end of datasheet)

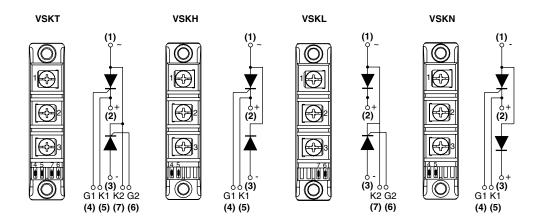
To specify change: 41 to 42

56 to 57

e.g.: VSKT57/16P etc.

Note

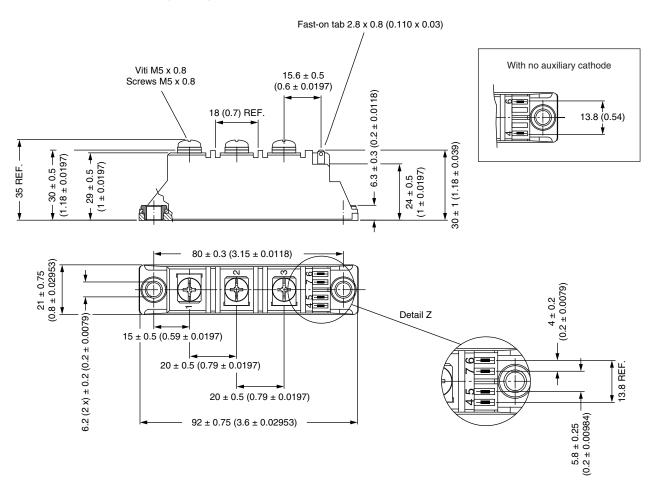
• To order the optional hardware go to www.vishay.com/doc?95172


VSK.41, .56..PbF Series

Vishay High Power Products

Thyristor/Diode and Thyristor/Thyristor (ADD-A-PAKTM Generation 5 Power Modules), 45/60 A

CIRCUIT CONFIGURATION


LINKS TO RELAT	ED DOCUMENTS
Dimensions	http://www.vishay.com/doc?95085

Vishay Semiconductors

ADD-A-PAK SCR

DIMENSIONS in millimeters (inches)

Legal Disclaimer Notice

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and/or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk and agree to fully indemnify and hold Vishay and its distributors harmless from and against any and all claims, liabilities, expenses and damages arising or resulting in connection with such use or sale, including attorneys fees, even if such claim alleges that Vishay or its distributor was negligent regarding the design or manufacture of the part. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

Document Number: 91000 www.vishay.com
Revision: 11-Mar-11 1