

Power MOSFET

PRODUCT SUMMARY				
V _{DS} (V)	600	600		
$R_{DS(on)}(\Omega)$	V _{GS} = 10 V	0.27		
Q _g (Max.) (nC)	150	150		
Q _{gs} (nC)	46	46		
Q _{gd} (nC)	64	64		
Configuration	Sing	Single		

N-Channel MOSFET

FEATURES

• Superfast Body Diode Eliminates the Need for External Diodes in ZVS Applications

 Lower Gate Charge Results in Simple Drive RoHS Requirements

- Enhanced dV/dt Capabilities Offer Improved Ruggedness
- Higher Gate Voltage Threshold Offers Improved Noise **Immunity**
- Compliant to RoHS Directive 2002/95/EC

APPLICATIONS

- Zero Voltage Switching SMPS
- Telecom and Server Power Supplies
- Uninterruptible Power Supplies
- Motor Control Applications

ORDERING INFORMATION	
Package	TO-247AC
Lead (Pb)-free	IRFP21N60LPbF
Lead (PD)-iree	SiHFP21N60L-E3
SnPb	IRFP21N60L
	SiHFP21N60L

ABSOLUTE MAXIMUM RATINGS (T _C	= 25 °C, unl	ess otherwis	se noted)		
PARAMETER			SYMBOL	LIMIT	UNIT
Drain-Source Voltage			V _{DS}	600	V
Gate-Source Voltage			V_{GS}	± 30	7 v
Continuous Dunies Comment			21		
Continuous Drain Current	V _{GS} at 10 V	T _C = 100 °C	I _D	13	Α
Pulsed Drain Current ^a			I _{DM}	84	
Linear Derating Factor				2.6	W/°C
Single Pulse Avalanche Energy ^b			E _{AS}	420	mJ
Repetitive Avalanche Current ^a			I _{AR}	21	Α
Repetitive Avalanche Energy ^a			E _{AR}	33	mJ
Maximum Power Dissipation	T _C =	25 °C	P_{D}	330	W
Peak Diode Recovery dV/dtc			dV/dt	16	V/ns
Operating Junction and Storage Temperature Range			T _J , T _{stg}	- 55 to + 150	°C
Soldering Recommendations (Peak Temperature) for 10 s				300 ^d	
Mounting Torque	6 22 or I	M2 gorou		10	lbf ⋅ in
Mounting Torque	6-32 or M3 screw			1.1	N · m

- a. Repetitive rating; pulse width limited by maximum junction temperature (see fig. 11). b. Starting $T_J=25$ °C, L=1.9 mH, $R_g=25$ Ω , $I_{AS}=21$ A, dV/dt=11 V/ns (see fig. 12a). c. $I_{SD}\leq 21$ A, $dI/dt\leq 530$ A/µs, $V_{DD}\leq V_{DS}$, $T_J\leq 150$ °C.

- d. 1.6 mm from case.

^{*} Pb containing terminations are not RoHS compliant, exemptions may apply

IRFP21N60L, SiHFP21N60L

Vishay Siliconix

THERMAL RESISTANCE RATINGS				
PARAMETER	SYMBOL	TYP.	MAX.	UNIT
Maximum Junction-to-Ambient	R_{thJA}	-	40	
Case-to-Sink, Flat, Greased Surface	R _{thCS}	0.24	-	°C/W
Maximum Junction-to-Case (Drain)	R _{thJC}	-	0.38	

PARAMETER	SYMBOL	TES	T CONDITIONS	MIN.	TYP.	MAX.	UNIT
Static							
Drain-Source Breakdown Voltage	V _{DS}	V _{GS}	= 0 V, I _D = 250 μA	600	-	-	V
V _{DS} Temperature Coefficient	$\Delta V_{DS}/T_{J}$	Reference	ce to 25 °C, I _D = 1 mA	-	420	-	mV/°C
Gate-Source Threshold Voltage	V _{GS(th)}	V _{DS} :	= V _{GS} , I _D = 250 μA	3.0	-	5.0	V
Gate-Source Leakage	I _{GSS}		V _{GS} = ± 30 V	-	-	± 100	nA
Zero Gate Voltage Drain Current	l	V _{DS} =	$= 600 \text{ V}, \text{ V}_{GS} = 0 \text{ V}$	-	-	50	μΑ
Zero date voltage Drain Gurrent	I _{DSS}	V _{DS} = 480 \	/, V _{GS} = 0 V, T _J = 125 °C	-	-	2.0	mA
Drain-Source On-State Resistance	R _{DS(on)}	V _{GS} = 10 V	$I_D = 13 A^b$	-	0.27	0.32	Ω
Forward Transconductance	9 _{fs}	V_{DS}	= 50 V, I _D = 13 A	11	-	-	S
Dynamic							
Input Capacitance	C _{iss}		$V_{GS} = 0 V$,	-	4000	-	
Output Capacitance	C_{oss}		$V_{DS} = 25 V,$	-	340	-	
Reverse Transfer Capacitance	C_{rss}	f = 1	.0 MHz, see fig. 5	-	29	-	pF
Effective Output Capacitance	Coss eff.		V _{GS} = 0 V,	-	170	-]
Effective Output Capacitance (Energy Related)	C _{oss} eff. (ER)	V _{DS}	$_{\rm GS} = 0 \text{ V},$ $_{\rm S} = 0 \text{ V to } 480 \text{ V}^{\rm c}$	-	130	-	
Total Gate Charge	Q_g		1 04 4 1/ 400 1/	-	-	150	
Gate-Source Charge	Q_{gs}	V _{GS} = 10 V	$I_D = 21 \text{ A}, V_{DS} = 480 \text{ V}$ see fig. 7 and 15 ^b	-	-	46	nC
Gate-Drain Charge	Q_{gd}		Ü	-	-	64	
Gate Resistance	R_g	f = 1	MHz, open drain	-	0.63	-	Ω
Turn-On Delay Time	t _{d(on)}	.,	000 \ / \ 01 \ \		20	-	
Rise Time	t _r		= 300 V, I _D = 21 A,	-	58	-	ns
Turn-Off Delay Time	t _{d(off)}	$R_g = 1.3 \Omega, V_{GS} = 10 V,$		-	33	-	118
Fall Time	t _f	see fig. 11a and 11b ^b		-	10	-	
Drain-Source Body Diode Characteristic	cs						
Continuous Source-Drain Diode Current	I _S	MOSFET sym showing the	bol	-	-	21	_ A
Pulsed Diode Forward Current ^a	I _{SM}	integral reverse p - n junction diode		-	-	84	A
Body Diode Voltage	V_{SD}	T _J = 25 °C, I _S = 21 A, V _{GS} = 0 V ^b		-	-	1.5	V
		T _J = 25 °C, I _F = 21 A		-	160	240	
Body Diode Reverse Recovery Time	t _{rr}	$T_J = 125 \text{ °C}, \text{ dI/dt} = 100 \text{ A/µs}^b$		-	400	610	ns
Body Diode Reverse Recovery Charge	0	T _J = 25 °C	C, I _F = 21 A, V _{GS} = 0 V ^b		480	730	nC
Body Blode Nevelse necovery Charge	Q _{rr}	T _J = 125 °C, dl/dt = 100 A/µs ^b -		1540	2310		
Reverse Recovery Time	I _{RRM}	T _J = 25 °C		-	5.3	7.9	Α
Forward Turn-On Time	t _{on}	Intrincic tu	rn-on time is negligible (turn	-on is dor	minated h	v L and	1 _\

Notes

- a. Repetitive rating; pulse width limited by maximum junction temperature (see fig. 11).
- b. Pulse width $\leq 300~\mu s;$ duty cycle $\leq 2~\%.$
- c. C_{oss} eff. is a fixed capacitance that gives the same charging time as C_{oss} while V_{DS} is rising form 0 % to 80 % V_{DS} . C_{oss} eff. (ER) is a fixed capacitance that stores the same energy as C_{oss} while V_{DS} is rising from 0 % to 80 % V_{DS} .

TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)

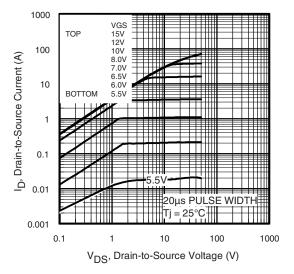


Fig. 1 - Typical Output Characteristics

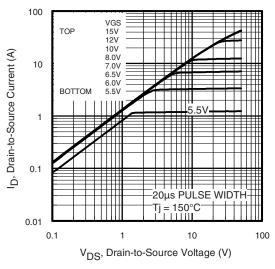


Fig. 2 - Typical Output Characteristics

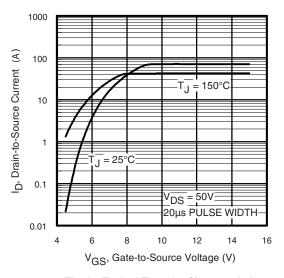


Fig. 3 - Typical Transfer Characteristics

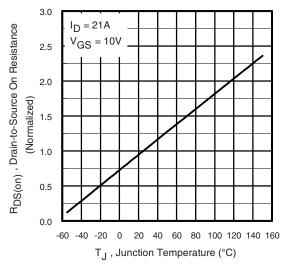


Fig. 4 - Normalized On-Resistance vs. Temperature

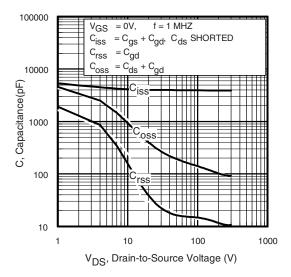


Fig. 5 - Typical Capacitance vs. Drain-to-Source Voltage

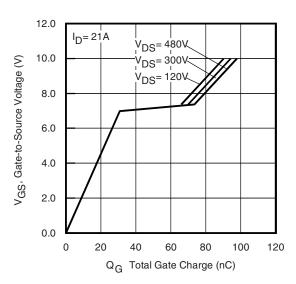


Fig. 7 - Typical Gate Charge vs. Gate-to-Source Voltage

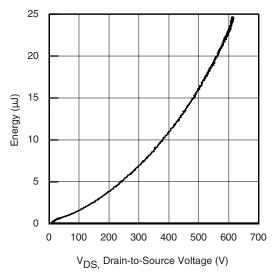


Fig. 6 - Typical Output Capacitance Stored Energy vs. V_{DS}

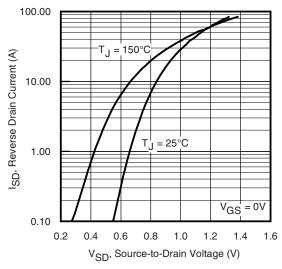
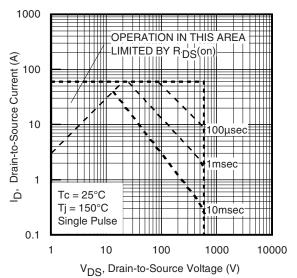
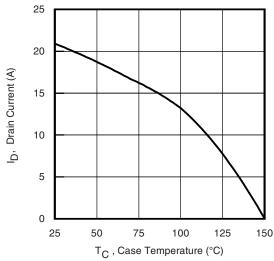



Fig. 8 - Typical Source-Drain Diode Forward Voltage



 $\begin{array}{c|c} R_D \\ V_{DS} \\ \hline \end{array}$ D.U.T. $\begin{array}{c|c} P_{US} \\ \hline \end{array}$ 10 V $\begin{array}{c|c} P_{US} \\ \hline \end{array}$ Pulse width $\leq 1 \ \mu S$ Duty factor $\leq 0.1 \ \%$

Fig. 11a - Switching Time Test Circuit

Fig. 9 - Maximum Safe Operating Area

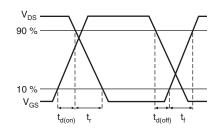


Fig. 11b - Switching Time Waveforms

Fig. 10 - Maximum Drain Current vs. Case Temperature

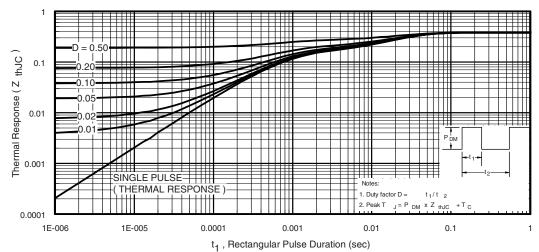


Fig. 12 - Maximum Effective Transient Thermal Impedance, Junction-to-Case

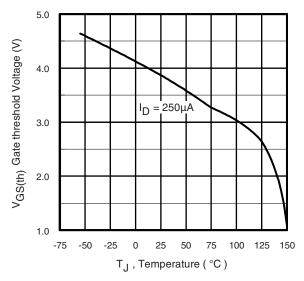


Fig. 13 - Threshold Voltage vs. Temperature

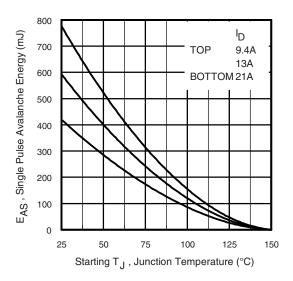


Fig. 14a - Maximum Avalanche Energy vs. Drain Current

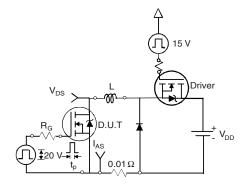


Fig. 14b - Unclamped Inductive Test Circuit

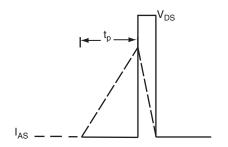


Fig. 14c - Unclamped Inductive Waveforms

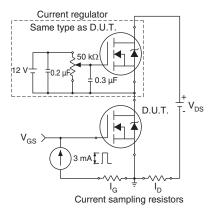


Fig. 15a - Gate Charge Test Circuit

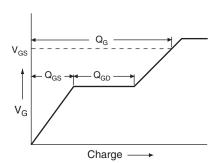
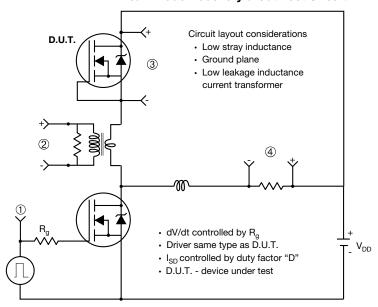
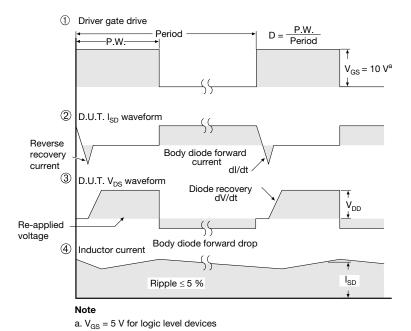
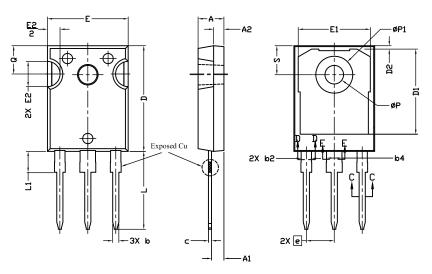



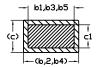
Fig. 15b - Basic Gate Charge Waveform

Peak Diode Recovery dV/dt Test Circuit




Fig. 16 - For N-Channel

Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and reliability data, see www.vishay.com/ppg?91206.

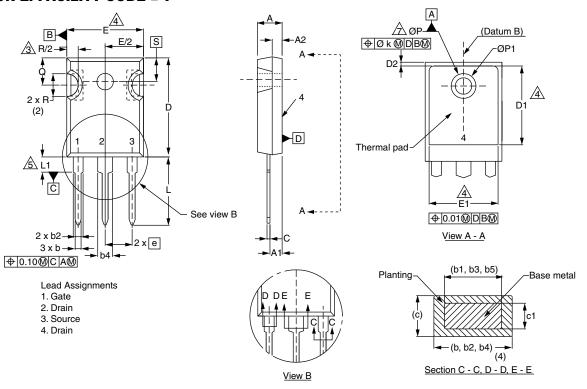


TO-247AC (High Voltage)

VERSION 1: FACILITY CODE = 9

Section C--C,D--D,E--E

	MILLIMETERS		
DIM.	MIN.	MAX.	NOTES
Α	4.83	5.21	
A1	2.29	2.55	
A2	1.50	2.49	
b	1.12	1.33	
b1	1.12	1.28	
b2	1.91	2.39	6
b3	1.91	2.34	
b4	2.87	3.22	6, 8
b5	2.87	3.18	
С	0.55	0.69	6
c1	0.55	0.65	
D	20.40	20.70	4


	MILLIMETERS		
DIM.	MIN.	MAX.	NOTES
D1	16.25	16.85	5
D2	0.56	0.76	
E	15.50	15.87	4
E1	13.46	14.16	5
E2	4.52	5.49	3
е	5.44	BSC	
L	14.90	15.40	
L1	3.96	4.16	6
ØΡ	3.56	3.65	7
Ø P1	7.19 ref.		
Q	5.31	5.69	
S	5.54	5.74	

Notes

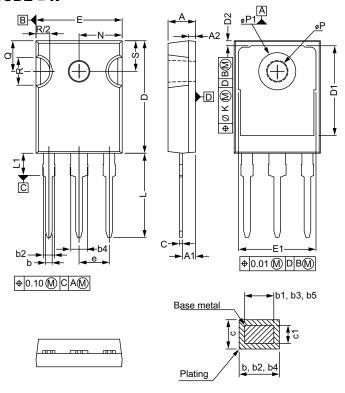
- (1) Package reference: JEDEC® TO247, variation AC
- (2) All dimensions are in mm
- (3) Slot required, notch may be rounded
- (4) Dimension D and E do not include mold flash. Mold flash shall not exceed 0.127 mm per side. These dimensions are measured at the outermost extremes of the plastic body
- (5) Thermal pad contour optional with dimensions D1 and E1
- (6) Lead finish uncontrolled in L1
- $^{(7)}$ Ø P to have a maximum draft angle of 1.5 $^\circ$ to the top of the part with a maximum hole diameter of 3.91 mm
- (8) Dimension b2 and b4 does not include dambar protrusion. Allowable dambar protrusion shall be 0.1 mm total in excess of b2 and b4 dimension at maximum material condition

Revision: 19-Oct-2020 1 Document Number: 91360

VERSION 2: FACILITY CODE = Y

	MILLIMETERS		
DIM.	MIN.	MAX.	NOTES
Α	4.58	5.31	
A1	2.21	2.59	
A2	1.17	2.49	
b	0.99	1.40	
b1	0.99	1.35	
b2	1.53	2.39	
b3	1.65	2.37	
b4	2.42	3.43	
b5	2.59	3.38	
С	0.38	0.86	
c1	0.38	0.76	
D	19.71	20.82	
D1	13.08	-	

	MILLIN		
DIM.	MIN.	MAX.	NOTES
D2	0.51	1.30	
E	15.29	15.87	
E1	13.72	-	
е	5.46	BSC	
Øk	0.2	0.254	
L	14.20	16.25	
L1	3.71	4.29	
ØΡ	3.51	3.66	
Ø P1	-	7.39	
Q	5.31	5.69	
R	4.52	5.49	
S	5.51 BSC		


Notes

- (1) Dimensioning and tolerancing per ASME Y14.5M-1994
- (2) Contour of slot optional
- (3) Dimension D and E do not include mold flash. Mold flash shall not exceed 0.127 mm (0.005") per side. These dimensions are measured at the outermost extremes of the plastic body
- (4) Thermal pad contour optional with dimensions D1 and E1
- (5) Lead finish uncontrolled in L1
- (6) Ø P to have a maximum draft angle of 1.5 to the top of the part with a maximum hole diameter of 3.91 mm (0.154")
- (7) Outline conforms to JEDEC outline TO-247 with exception of dimension c

www.vishay.com

Vishay Siliconix

VERSION 3: FACILITY CODE = N

	MILLIMETERS		
DIM.	MIN.	MAX.	
Α	4.65	5.31	
A1	2.21	2.59	
A2	1.17	1.37	
b	0.99	1.40	
b1	0.99	1.35	
b2	1.65	2.39	
b3	1.65	2.34	
b4	2.59	3.43	
b5	2.59	3.38	
С	0.38	0.89	
c1	0.38	0.84	
D	19.71	20.70	
D1	13.08	-	

	MILLIMETERS		
DIM.	MIN.	MAX.	
D2	0.51	1.35	
E	15.29	15.87	
E1	13.46	-	
е	5.46	BSC	
k	0.254		
L	14.20	16.10	
L1	3.71	4.29	
N	7.62 BSC		
Р	3.56	3.66	
P1	=	7.39	
Q	5.31	5.69	
R	4.52	5.49	
S	5.51 BSC		

ECN: E20-0545-Rev. F, 19-Oct-2020

DWG: 5971

Notes

- ⁽¹⁾ Dimensioning and tolerancing per ASME Y14.5M-1994
- (2) Contour of slot optional
- (3) Dimension D and E do not include mold flash. Mold flash shall not exceed 0.127 mm (0.005") per side. These dimensions are measured at the outermost extremes of the plastic body
- (4) Thermal pad contour optional with dimensions D1 and E1
- (5) Lead finish uncontrolled in L1
- (6) Ø P to have a maximum draft angle of 1.5 to the top of the part with a maximum hole diameter of 3.91 mm (0.154")

Legal Disclaimer Notice

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Hyperlinks included in this datasheet may direct users to third-party websites. These links are provided as a convenience and for informational purposes only. Inclusion of these hyperlinks does not constitute an endorsement or an approval by Vishay of any of the products, services or opinions of the corporation, organization or individual associated with the third-party website. Vishay disclaims any and all liability and bears no responsibility for the accuracy, legality or content of the third-party website or for that of subsequent links.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

© 2021 VISHAY INTERTECHNOLOGY, INC. ALL RIGHTS RESERVED