

SOT-227 Power Module Single Switch - Power MOSFET, 420 A

PRIMARY CHARACTERISTICS					
V_{DSS}	100 V				
R _{DS(on)}	1.3 mΩ				
I _D ⁽¹⁾	330 A at 90 °C				
Type	Modules - MOSFET				
Package	SOT-227				

FEATURES

- $I_D > 420 \text{ A}, T_C = 25 \, ^{\circ}\text{C}$
- TrenchFET® power MOSFET
- Low input capacitance (Ciss)
- Reduced switching and conduction losses
- Ultra low gate charge (Q_a)
- Avalanche energy rated (U_{IS})
- UL approved file E78996
- Material categorization: for definitions of compliance please see www.vishay.com/doc?99912

ABSOLUTE MAXIMUM RATINGS (T _C = 25 °C unless otherwise specified)						
PARAMETER	SYMBOL	TEST CONDITIONS	MAX.	UNITS		
MOSFET						
Drain to source voltage	V_{DSS}		100	V		
Ocalia a calaira a sast V at 40 V	1	T _C = 25 °C	435			
Continuous drain current, V _{GS} at 10 V	I _D	T _C = 90 °C	330	Α		
Pulsed drain current	I _{DM} ⁽¹⁾		1130			
Power dissipation	P _D	T _C = 25 °C	652	W		
Gate to source voltage	V _{GS}		± 20	V		
Single pulse avalanche energy	E _{AS}	T_C = 25 °C, L = 10 mH, V_{GS} = 10 V	11 500	mJ		
Single pulse avalanche current	I _{AS}	$T_C = 25 ^{\circ}\text{C}, L = 10 \text{mH}, V_{GS} = 10 \text{V}$	48	Α		
MODULE			<u>.</u>			
Insulation voltage (RMS)	V _{ISOL}	any terminal to case, t = 1 min	2500	V		
Operating junction temperature range	TJ		-55 to +175	°C		

Notes

(1) Limited at maximum junction temperature

THERMAL - MECHANICAL SPECIFICATIONS							
PARAMETER		SYMBOL	TEST CONDITIONS	MIN.	TYP.	MAX.	UNITS
Junction and storage tem	perature range	T_J , T_{Stg}		-55	-	175	ပ္
Junction to case	MOSFET	R_{thJC}		-	-	0.23	°C/W
Case to heat sink	Module	R _{thCS}	Flat, greased surface	-	0.1	-	C/VV
Weight				-	30	-	g
Mounting torque			Torque to terminal	-	-	1.1 (9.7)	Nm (lbf.in)
Mounting torque			Torque to heatsink	-	-	1.8 (15.9)	Nm (lbf.in)
Case style				SOT-227			

ELECTRICAL CHARACTERISTICS (T _J = 25 °C unless otherwise specified)						
PARAMETER	SYMBOL	TEST CONDITIONS	MIN.	TYP.	MAX.	UNITS
Drain to source breakdown voltage	V _{(BR)DSS}	$V_{GS} = 0 \text{ V}, I_D = 750 \mu\text{A}$	100	-	-	V
Static drain to source on-resistance	R _{DS(on)}	V _{GS} = 10 V, I _D = 200 A	-	1.3	2.15	mΩ
Gate threshold voltage	V _{GS(th)}	$V_{DS} = V_{GS}, I_D = 750 \mu A$	2.2	2.9	3.8	V
Forward transconductance	9 _{fs}	$V_{DS} = 20 \text{ V}, I_D = 20 \text{ A}, V_{GS} = 10 \text{ V}$	-	94	-	S
Duain to accuracy locked as accurrent		V _{DS} = 100 V, V _{GS} = 0 V	-	0.6	4	
Drain to source leakage current	I _{DSS}	V _{DS} = 100 V, V _{GS} = 0 V, T _J = 125 °C	-	32	-	μA
Gate to source leakage	I _{GSS}	V _{GS} = ± 20 V	-	-	± 350	nA
Total gate charge	Qg	I _D = 200 A	-	375	-	
Gate to source charge	Q_{gs}	$V_{DS} = 50 \text{ V}$		84	-	nC
Gate to drain ("Miller") charge	Q _{gd}	V _{GS} = 10 V	-	138	-	1
Turn-on delay time	t _{d(on)}	V _{DD} = 50 V	-	45	-	
Rise time	t _r	$I_D = 100 \text{ A}$ $R_g = 1.2 \Omega$	-	275	-	
Turn-off delay time	t _{d(off)}		-	152	-	ns
Fall time	t _f	V _{GS} = 10 V	-	172	-	
Input capacitance	C _{iss}	V _{GS} = 0 V	-	17.3	-	
Output capacitance	C _{oss}	V _{DS} = 25 V	-	9.2	-	nF
Reverse transfer capacitance	C _{rss}	f = 1 MHz	-	0.9	-	

SOURCE-DRAIN RATINGS AND CHARACTERISTICS (T _J = 25 °C unless otherwise specified)						
PARAMETER	SYMBOL	TEST CONDITIONS	MIN.	TYP.	MAX.	UNITS
Continuous source current (body diode)	I _S	MOSFET symbol	-	-	435	
Pulsed source current (body diode)	I _{SM}	showing the integral reverse p-n junction diode	-	-	1130	A
Diode forward voltage	V _{SD}	I _S = 200 A, V _{GS} = 0 V	-	0.91	1.5	V
Reverse recovery time	t _{rr}	T 05 00 1 1 50 4	-	171	-	ns
Reverse recovery charge	Q _{rr}	$T_J = 25 ^{\circ}\text{C}, I_F = I_S = 50 \text{A},$ $dI/dt = 100 \text{A/}\mu\text{s}, V_R = 50 \text{V}$	-	740	-	nC
Reverse recovery current	I _{RM}	α, αι = 1007 τμο, τη = 00 τ	-	8.7	-	Α

Fig. 1 - Maximum Continuous Drain Current vs. Case Temperature

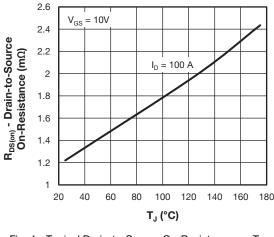


Fig. 4 - Typical Drain-to-Source On-Resistance vs. Temperature

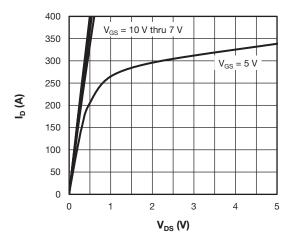


Fig. 2 - Typical Drain to Source Current Output Characteristics at $T_{J}=25\ ^{\circ}\text{C}$

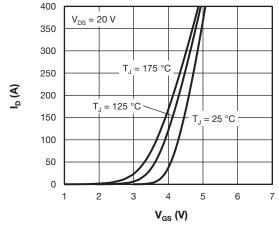


Fig. 5 - Typical Transfer Characteristics

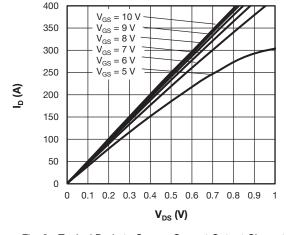


Fig. 3 - Typical Drain to Source Current Output Characteristics at $T_J = 125\ ^{\circ}\text{C}$

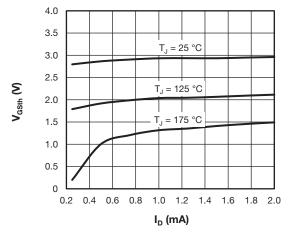


Fig. 6 - Typical Gate Threshold Voltage Characteristics

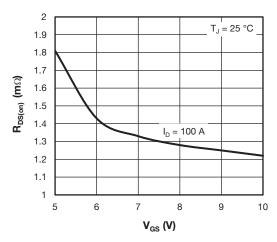


Fig. 7 - Typical Drain-State Resistance vs. Gate-to-Source Voltage

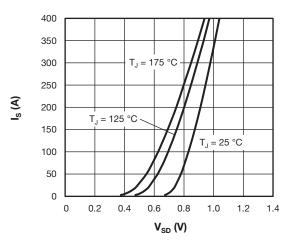


Fig. 8 - Typical Body Diode Source-to-Drain Current Characteristics

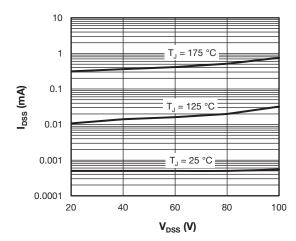


Fig. 9 - Typical Zero Gate Voltage Drain Current

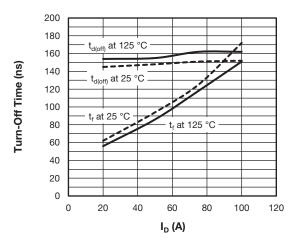


Fig. 10 - Typical Turn off Switching Time vs. I_d $V_{DD}=50$ V, $R_g=1.2~\Omega,\,V_{GS}=\pm~10$ V, $L=500~\mu H$

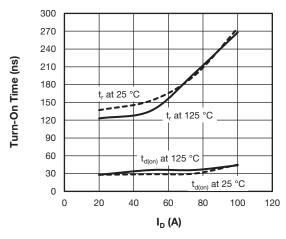


Fig. 11 - Typical Turn-on Switching Time vs. I_d V_{DD} = 50 V, R_q = 1.2 Ω , V_{GS} = \pm 10 V, L = 500 μ H

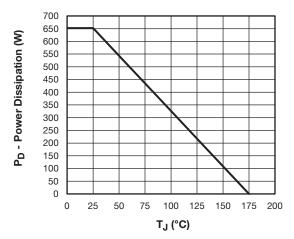


Fig. 12 - Power Dissipation Curve

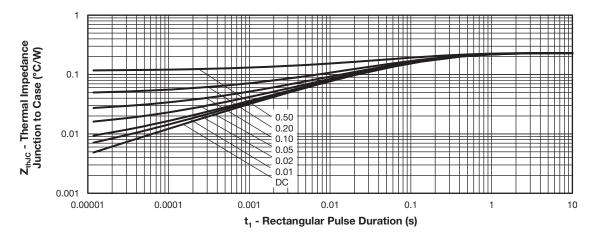


Fig. 13 - Maximum Thermal Impedance Junction-to-Case Characteristics

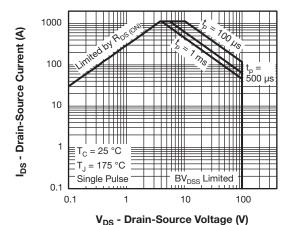
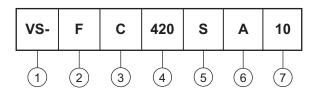



Fig. 14 - Safe Operating Area

ORDERING INFORMATION TABLE

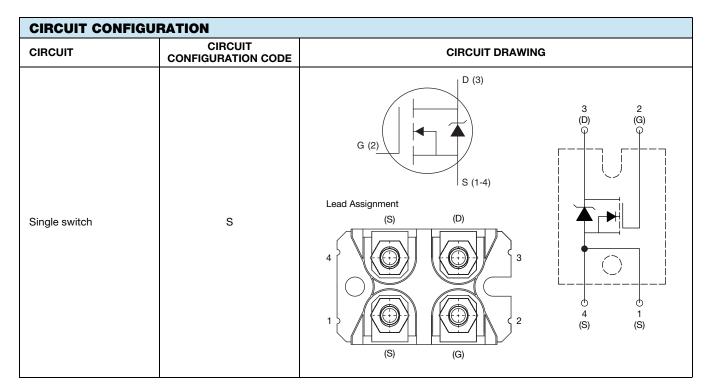
Device code

1 - Vishay Semiconductors product

2 - MOSFET module

3 - MOSFET die generation

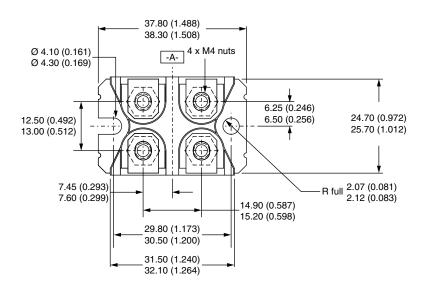
4 - Current rating (420 = 420 A)

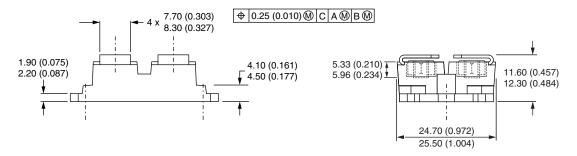

5 - Circuit configuration (S = single switch)

6 - Package indicator (SOT-227 standard insulated base)

7 - Voltage rating (10 = 100 V)

Quantity per tube is 10, M4 screw and washer included





LINKS TO RELATED DOCUMENTS				
Dimensions www.vishay.com/doc?95423				
Packaging information	www.vishay.com/doc?95425			

SOT-227 Generation 2

DIMENSIONS in millimeters (inches)

Note

· Controlling dimension: millimeter

Revision: 19-May-2020 1 Document Number: 95423

Legal Disclaimer Notice

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Hyperlinks included in this datasheet may direct users to third-party websites. These links are provided as a convenience and for informational purposes only. Inclusion of these hyperlinks does not constitute an endorsement or an approval by Vishay of any of the products, services or opinions of the corporation, organization or individual associated with the third-party website. Vishay disclaims any and all liability and bears no responsibility for the accuracy, legality or content of the third-party website or for that of subsequent links.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.