Vishay Semiconductors

Inverter Grade Thyristors (Stud Version), 175 A

PRIMARY CHARACTERISTICS								
I _{T(AV)}	175 A							
V _{DRM} /V _{RRM}	1000 V, 1200 V							
V _{TM}	2.07 V							
I _{TSM} at 50 Hz	4680 A							
I _{TSM} at 60 Hz	4900 A							
I _{GT}	200 mA							
TJ	-40 °C to 125 °C							
T _C	85 °C							
Package	TO-93 (TO-209AB)							
Circuit configuration	Single SCR							

FEATURES

- All diffused design
- Center amplifying gate
- Guaranteed high dV/dt
- Guaranteed high dl/dt
- High surge current capability
- Low thermal impedance
- High speed performance
- Compression bonding
- Designed and qualified for industrial level
- Material categorization: for definitions of compliance please see <u>www.vishay.com/doc?99912</u>

TYPICAL APPLICATIONS

- Inverters
- Choppers
- Induction heating
- All types of force-commutated converters

MAJOR RATINGS AND CHARACTERISTICS									
PARAMETER	TEST CONDITIONS	VALUES	UNITS						
1		175	A						
I _{T(AV)}	T _C	85	°C						
I _{T(RMS)}		275							
1	50 Hz	4680	А						
ITSM	60 Hz	4900							
l ² t	50 Hz	110	- kA ² s						
1-1	60 Hz	100	KA-S						
V _{DRM} /V _{RRM}		1000 to 1200	V						
t _q	Range	15 to 25	μs						
TJ		-40 to 125	°C						

ELECTRICAL SPECIFICATIONS

VOLTAGE RATINGS											
TYPE NUMBER	VOLTAGE CODE	V _{DRM} /V _{RRM} , MAXIMUM REPETITIVE PEAK VOLTAGE V	V _{RSM} , MAXIMUM NON-REPETITIVE PEAK VOLTAGE V	I_{DRM}/I_{RRM} MAXIMUM AT T _J = T _J MAXIMUM mA							
VS-ST173S	10	1000	1100	40							
V3-311733	12	1200	1300	40							

www.vishay.com

Vishay Semiconductors

FREQUENCY	180° e		180° 6		100 µ	s	UNITS				
50 Hz	500	320	790	550	4510	3310					
400 Hz	450	290	810	540	1970	1350	A				
1000 Hz	330	190	760	490	1050	680					
2500 Hz	170	80	510	300	480	280					
Recovery voltage V _r	5	0	50		5	v					
Voltage before turn-on V _d	VD	RM	V _{DRM}		V _{DRM}		v				
Rise of on-state current dl/dt	5	50		-		-	A/µs				
Case temperature	60	85	60	85	60	85	°C				
Equivalent values for RC circuit	47/0	47/0.22		47/0.22		47/0.22					

ON-STATE CONDUCTION							
PARAMETER	SYMBOL		VALUES	UNITS			
Maximum average on-state current	L	180° condu	ction, half sine v	N0)/0	175	А	
at case temperature	I _{T(AV)}		ction, nan sine v	wave	85	°C	
Maximum RMS on-state current	I _{T(RMS)}	DC at 75 °C	case temperat	ure	275		
		t = 10 ms	No voltage		4680		
Maximum peak, one half cycle,		t = 8.3 ms	reapplied		4900	А	
non-repetitive surge current	I _{TSM}	t = 10 ms	100 % V _{RBM}		3940		
		t = 8.3 ms	reapplied	Sinusoidal half wave,	4120	1	
Marian 12t factorian		t = 10 ms	No voltage	initial $T_J = T_J$ maximum	110		
	l ² t	t = 8.3 ms	reapplied		100	kA²s	
Maximum I ² t for fusing		t = 10 ms	100 % V _{RRM}		77		
		t = 8.3 ms	reapplied		71		
Maximum I ² √t for fusing	l²√t	t = 0.1 to 10) ms, no voltage	e reapplied	1100	kA²√s	
Maximum peak on-state voltage	V _{TM}		, $T_J = T_J maximisine wave pulse$		2.07		
Low level value of threshold voltage	V _{T(TO)1}	(16.7 % x π	$x _{T(AV)} < l < \pi x$	$I_{T(AV)}$), $T_J = T_J$ maximum	1.55	V	
High level value of threshold voltage	V _{T(TO)2}	$(I > \pi \times I_{T(AV)})$), T _J = T _J maxin	านm	1.58		
Low level value of forward slope resistance	r _{t1}	(16.7 % x π	$x I_{T(AV)} < I < \pi x$	$I_{T(AV)}$), $T_J = T_J$ maximum	0.87		
High level value of forward slope resistance	r _{t2}	$(I > \pi \times I_{T(AV)})$	$(I > \pi \times I_{T(AV)}), T_J = T_J \text{ maximum}$				
Maximum holding current	Ι _Η	T _J = 25 °C,	I _T > 30 A		600	mA	
Typical latching current	١L	T _J = 25 °C,	V _A = 12 V, R _a =	6 Ω, I _G = 1 A	1000	ma	

SWITCHING					
PARAMETER		SYMBOL	VALUES	UNITS	
Maximum non-repetitive rate of ris	se	dl/dt	T _J = T _J maximum, V _{DRM} = Rated V _{DRM} I _{TM} = 2 x dl/dt	1000	A∕µs
Typical delay time		t _d	T_J = 25 °C, V_{DM} = Rated V_{DRM} , I_{TM} = 50 A DC, t_p = 1 µs Resistive load, gate pulse: 10 V, 5 Ω source	1.1	
	ninimum		$T_J = T_J$ maximum,	15	μs
Maximum turn-off time	naximum	tq	I_{TM} = 300 A, commutating dI/dt = 20 A/µs V _R = 50 V, t _p = 500 µs, dV/dt: See table in device code	25	

Revision: 22-Aug-17

2

For technical questions within your region: <u>DiodesAmericas@vishay.com</u>, <u>DiodesAsia@vishay.com</u>, <u>DiodesEurope@vishay.com</u> THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT <u>www.vishay.com/doc?91000</u> www.vishay.com

SHAY

VS-ST173S Series

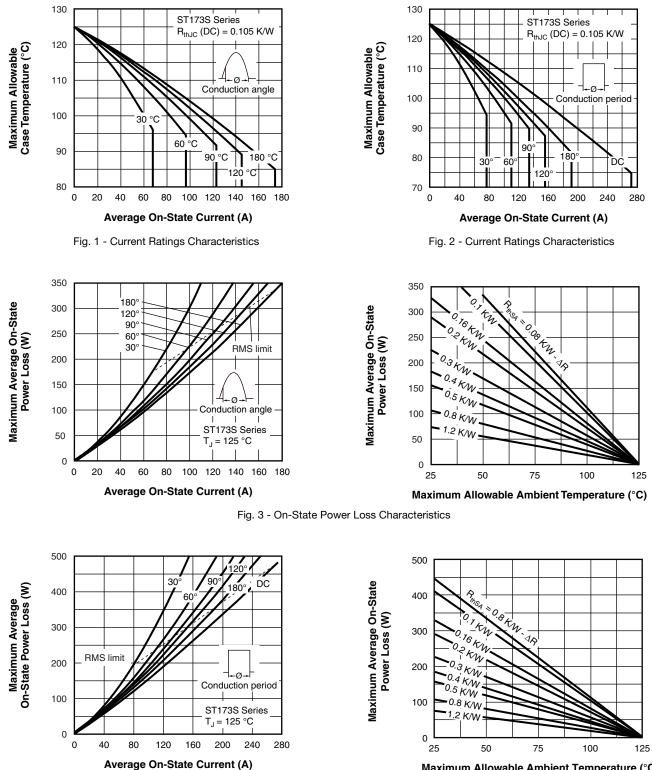
Vishay Semiconductors

BLOCKING											
PARAMETER	SYMBOL	TEST CONDITIONS	VALUES	UNITS							
Maximum critical rate of rise of off-state voltage	dV/dt	$T_J = T_J$ maximum, linear to 80 % V _{DRM} , higher value available on request	500	V/µs							
Maximum peak reverse and off-state leakage current	I _{RRM} , I _{DRM}	$T_J = T_J$ maximum, rated V_{DRM}/V_{RRM} applied	40	mA							

TRIGGERING					
PARAMETER	SYMBOL	TEST CONDITIONS	VALUES	UNITS	
Maximum peak gate power	P _{GM}	T _J = T _J maximum, f = 50 Hz, d% = 50	60	W	
Maximum average gate power	P _{G(AV)}	1J = 1J maximum, 1 = 50 Hz, 0% = 50	10		
Maximum peak positive gate current	I _{GM}		10	А	
Maximum peak positive gate voltage	+ V _{GM}	$T_J = T_J$ maximum, $t_p \le 5$ ms	20	V	
Maximum peak negative gate voltage	- V _{GM}		5	v	
Maximum DC gate current required to trigger	I _{GT}	$T_{1} = 25 \text{ °C}, V_{A} = 12 \text{ V}, R_{a} = 6 \Omega$	200	mA	
Maximum DC gate voltage required to trigger	V _{GT}	$1j = 23$ G, $v_A = 12$ V, $n_a = 0.32$	3	V	
Maximum DC gate current not to trigger	I _{GD}	$T_{I} = T_{I}$ maximum, rated V_{DBM} applied	20	mA	
Maximum DC gate voltage not to trigger	V_{GD}	$1J = 1J$ maximum, rated v_{DRM} applied	0.25	V	

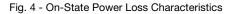
THERMAL AND MECHANICAL SPECIFICATIONS										
PARAMETER	SYMBOL	TEST CONDITIONS	VALUES	UNITS						
Maximum junction operating temperature range	TJ		-40 to 125	°C						
Maximum storage temperature range	T _{Stg}		-40 to 150							
Maximum thermal resistance, junction to case	R _{thJC}	DC operation	0.105	K/W						
Maximum thermal resistance, case to heatsink	R _{thCS}	Mounting surface, smooth, flat and greased	0.04	r\/ vv						
Mounting torque + 10.0/		Non-lubricated threads	31 (275)	N⋅m						
Mounting torque, ± 10 %		Lubricated threads	24.5 (210)	(lbf · in)						
Approximate weight			280	g						
Case style		See dimensions - link at the end of datasheet	et TO-93 (TO-209AB)							

	N			
CONDUCTION ANGLE	SINUSOIDAL CONDUCTION	RECTANGULAR CONDUCTION	TEST CONDITIONS	UNITS
180°	0.016	0.012		
120°	0.019	0.020		
90°	0.025	0.027	$T_J = T_J maximum$	K/W
60°	0.036	0.037		
30°	0.060	0.060		


Note

• The table above shows the increment of thermal resistance RthJC when devices operate at different conduction angles than DC

For technical questions within your region: <u>DiodesAmericas@vishay.com</u>, <u>DiodesAsia@vishay.com</u>, <u>DiodesEurope@vishay.com</u> THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT <u>www.vishay.com/doc?91000</u>



Vishay Semiconductors

www.vishay.com

Maximum Allowable Ambient Temperature (°C)

Downloaded from Arrow.com.

Vishay Semiconductors

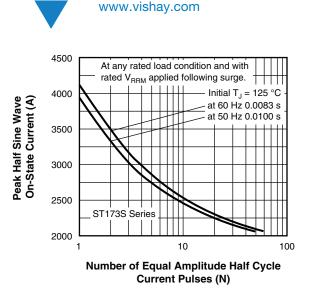


Fig. 5 - Maximum Non-Repetitive Surge Current

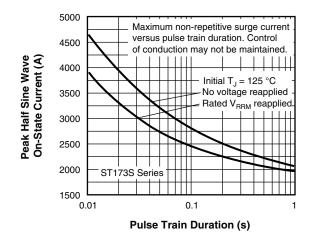


Fig. 6 - Maximum Non-Repetitive Surge Current

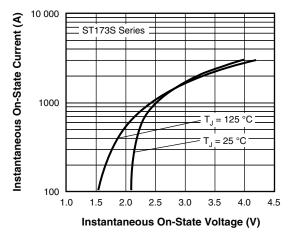


Fig. 7 - On-State Voltage Drop Characteristics

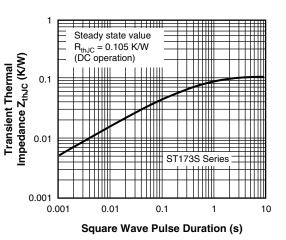


Fig. 8 - Thermal Impedance Z_{thJC} Characteristics

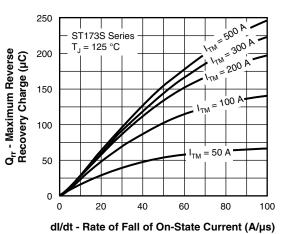


Fig. 9 - Reverse Recovered Current Characteristics

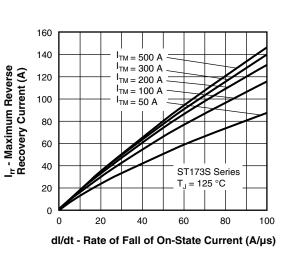
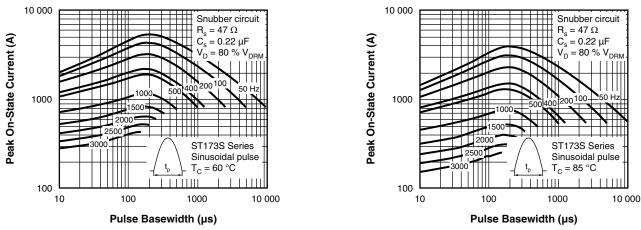
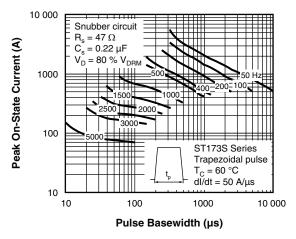


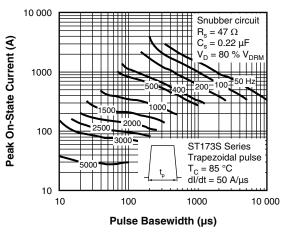
Fig. 10 - Reverse Recovery Current Characteristics

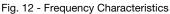
Revision: 22-Aug-17

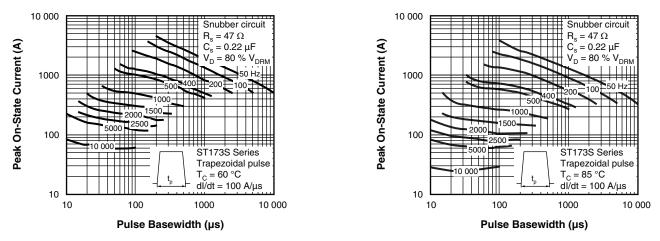

5

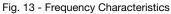
Document Number: 94367

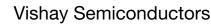

For technical questions within your region: <u>DiodesAmericas@vishay.com</u>, <u>DiodesAsia@vishay.com</u>, <u>DiodesEurope@vishay.com</u> THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT <u>www.vishay.com/doc?91000</u>


Vishay Semiconductors






Fig. 11 - Frequency Characteristics



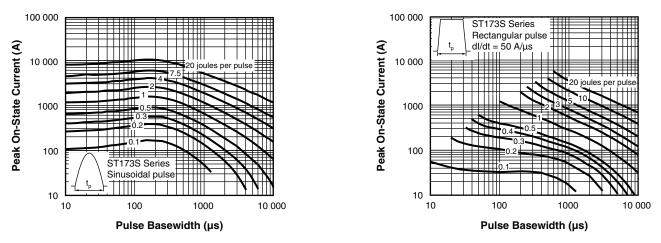


Fig. 14 - Maximum On-State Energy Power Loss Characteristics

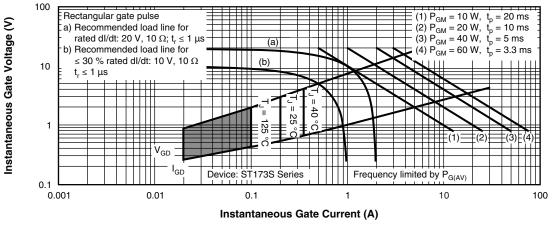


Fig. 15 - Gate Characteristics

 Revision: 22-Aug-17
 7
 Document Number: 94367

 For technical questions within your region: DiodesAmericas@vishay.com, DiodesAsia@vishay.com, DiodesEurope@vishay.com
 THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000

SHA

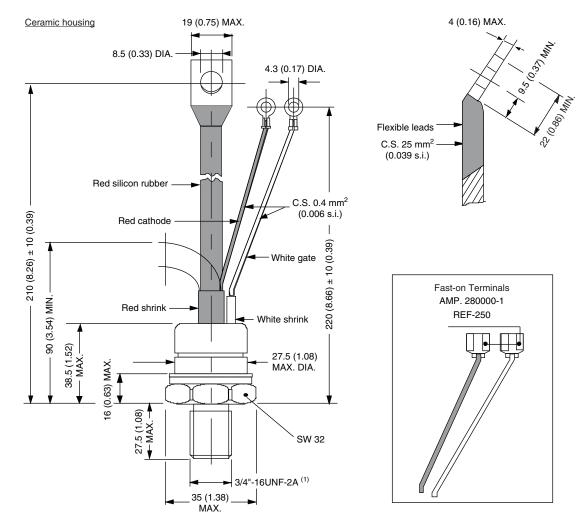
www.vishay.com

ORDERING INFORMATION TABLE

www.vishay.com

VISHAY

Device code	VS-	ST	17	3	S	12	Р	F	к	0	-	-			
	1	2	3	4	5	6	7	8	9	10	(1	1)			
	 Vishay Semiconductors product Thyristor Essential part number 3 = fast turn-off S = compression bonding stud Voltage code x 100 = V_{RRM} (see Voltage Rational Context) P = stud base 3/4" 16UNF-2A 								table) dV/dt -	t _e con	bina	tions	savai	lable	
	8 -	Rea	applied d	IV/dt co	de (for	t _q test c	onditior		dV/dt (20	50	100		400
	9 - 10 -	· 0 =	ode – eyelet te te and au			ds)		t _q (μ	15 18 20 25 30		CL CP CK CJ	- DP DK DJ DH	- EP EK EJ EH	- FP* FK* FJ FH	- HK HJ HH
			fast-on fast-on fast-on fast-on fast-on fast fast fast fast fast fast fast fast			ds)			dard pa er types			onlv o	n rea	uest.	
	11 -	2 = Crit • No	 (gate and aux. cathode leads) All other types available only on 2 = flag terminals (for cathode and gate terminals) Critical dV/dt: None = 500 V/µs (standard value) L = 1000 V/µs (special selection) 												

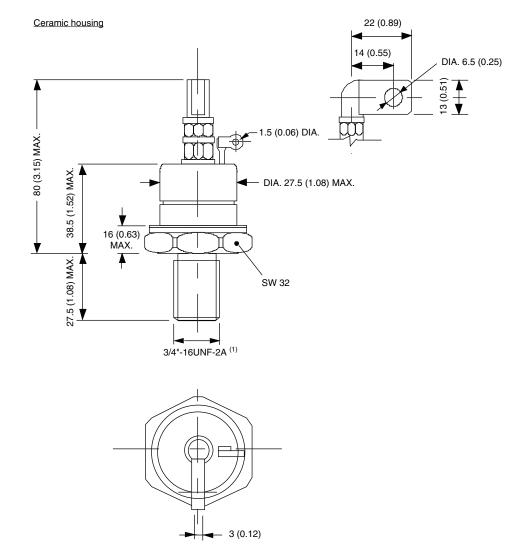

LINKS TO RELATED DOCUMENTS	
Dimensions	www.vishay.com/doc?95079

Vishay Semiconductors

TO-209AB (TO-93)

DIMENSIONS - TO-209AB (TO-93) in millimeters (inches)

Note


⁽¹⁾ For metric device: M16 x 1.5 - length 21 (0.83) maximum

Vishay Semiconductors

TO-209AB (TO-93)

DIMENSIONS - TO-209AB (TO-93) FLAG TERMINALS in millimeters (inches)

Note

⁽²⁾ For metric device: M16 x 1.5 - length 21 (0.83) maximum

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Hyperlinks included in this datasheet may direct users to third-party websites. These links are provided as a convenience and for informational purposes only. Inclusion of these hyperlinks does not constitute an endorsement or an approval by Vishay of any of the products, services or opinions of the corporation, organization or individual associated with the third-party website. Vishay disclaims any and all liability and bears no responsibility for the accuracy, legality or content of the third-party website or for that of subsequent links.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.