Vishay Siliconix

Power MOSFET

TO-220AB S N-Channel MOSFET

PRODUCT SUMMA	RY	
V _{DS} (V)	600)
R _{DS(on)} (Ω)	$V_{GS} = 10 V$	0.75
Q _g max. (nC)	49	
Q _{gs} (nC)	13	
Q _{gd} (nC)	20	
Configuration	Sing	le

FEATURES

- · Low gate charge Qg results in simple drive requirement **RoHS**³
- Improved gate, avalanche and dynamic dV/dt ruggedness
- Fully characterized capacitance and avalanche voltage and current
- · Material categorization: for definitions of compliance please see www.vishay.com/doc?99912

APPLICATIONS

- Switch mode power supply (SMPS)
- Uninterruptible power supply
- · High speed power switching

APPLICABLE OFF LINE SMPS TOPOLOGIES

- · Active clamped forward
- · Main switch

ORDERING INFORMATION	
Package	TO-220AB
Lead (Pb)-free	IRFB9N60APbF
Lead (Pb)-free and halogen-free	IRFB9N60APbF-BE3

ABSOLUTE MAXIMUM RATINGS (T _C	= 25 °C, unl	ess otherwis	se noted)		
PARAMETER			SYMBOL	LIMIT	UNIT
Drain-source voltage			V _{DS}	600	V
Gate-source voltage		V _{GS}	± 30	v	
Continuous dusin surrent	V at 10 V	T _C = 25 °C T _C = 100 °C		9.2	
Continuous drain current	VGS at TO V	T _C = 100 °C	I _D	5.8	А
Pulsed drain current ^a	1 _C = 100 °C		I _{DM}	37	
Linear derating factor				1.3	W/°C
Single pulse avalanche energy ^b			E _{AS}	290	mJ
Repetitive avalanche current ^a			I _{AR}	9.2	A
Repetitive avalanche energy ^a			E _{AR}	17	mJ
Maximum power dissipation	T _C =	25 °C	PD	170	W
Peak diode recovery dV/dt ^c			dV/dt	5.0	V/ns
Operating junction and storage temperature range			T _J , T _{stg}	-55 to +150	°C
Soldering recommendations (peak temperature) ^d	For	10 s	-	300	
Mounting torque	6.20 or 1	VI3 screw		10	lbf ∙ in
Mounting torque	0-32 OF 1	VIS SCIEW		1.1	N · m

Notes

- a. Repetitive rating; pulse width limited by maximum junction temperature (see fig. 11)
- b. Starting $T_J = 25 \text{ °C}$, L = 6.8 mH, $R_q = 25 \Omega$, $I_{AS} = 9.2 \text{ A}$ (see fig. 12)
- c. $I_{SD} \le 9.2$ Å, dI/dt ≤ 50 Å/µs, $V_{DD} \le V_{DS}$, $T_J \le 150$ °C
- d. 1.6 mm from case

S21-0867-Rev. E, 16-Aug-2021

1 For technical questions, contact: hvm@vishay.com

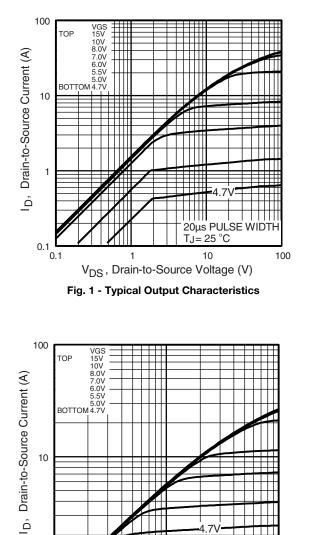
Vishay Siliconix

THERMAL RESISTANCE RATI	NGS							
PARAMETER	SYMBOL	TYP		MAX.			UNIT	
Maximum junction-to-ambient	R _{thJA}	-		62				
Case-to-sink, flat, greased surface	R _{thCS}	0.50 - - 0.75				°C/W		
Maximum junction-to-case (drain)	R _{thJC}							
SPECIFICATIONS ($T_J = 25 \ ^{\circ}C$, u	inless otherw	vise noted)						
PARAMETER	SYMBOL	TES		ONS	MIN.	TYP.	MAX.	UNIT
Static	•	•			•	•	•	•
Drain-source breakdown voltage	V _{DS}	V _{GS} =	= 0 V, I _D = 2	50 µA	600	-	-	V
V _{DS} temperature coefficient	$\Delta V_{DS}/T_{J}$	Reference	e to 25 °C,	l _D = 1 mA	-	660	-	mV/°C
Gate-source threshold voltage	V _{GS(th)}	V _{DS} =	= V _{GS} , I _D = 2	50 µA	2.0	-	4.0	V
Gate-source leakage	I _{GSS}		V _{GS} = ± 30 \	/	-	-	± 100	nA
Zere gete veltege drein eurrent		V _{DS} =	= 600 V, V _{GS}	= 0 V	-	-	25	
Zero gate voltage drain current	e voltage drain current I_{DSS} $V_{DS} = 480 \text{ V}, \text{ V}_{GS} = 0 \text{ V}, \text{ T}_{J} = 125 \text{ °C}$		T _J = 125 °C	-	-	250	μA	
Drain-source on-state resistance	R _{DS(on)}	V _{GS} = 10 V	I _D =	= 5.5 A ^b	-	-	0.75	Ω
Forward transconductance	g _{fs}	V _{DS}	= 50 V, I _D =	5.5 A	5.5	-	-	S
Dynamic								•
Input capacitance	C _{iss}		V _{GS} = 0 V,		-	1400	-	
Output capacitance	C _{oss}		$V_{\rm DS} = 25 \text{ V},$		-	180	-]
Reverse transfer capacitance	C _{rss}	f = 1	.0 MHz, see	fig. 5	-	7.1	-	
Output conscitence		V _{DS} = 1.0	V _{DS} = 1.0	V, f = 1.0 MHz	-	1957	-	pF
Output capacitance	C _{oss}	$V_{GS} = 0 V$	V _{DS} = 480	V, f = 1.0 MHz	-	49	-	
Effective output capacitance	C _{oss} eff.		$V_{DS} = 0$	0 V to 480 V	-	96	-	
Total gate charge	Qg				-	-	49	
Gate-source charge	Q _{gs}	V _{GS} = 10 V		A, V _{DS} = 400 V . 6 and 13 ^b	-	-	13	nC
Gate-drain charge	Q _{gd}				-	-	20	
Turn-on delay time	t _{d(on)}	- L			-	13	-	
Rise time	t _r	V _{DD} =	= 300 V, I _D =	9.2 A	-	25	-	1 _
Turn-off delay time	t _{d(off)}	$R_g = 9.1 \Omega$, $R_D = 35.5 \Omega$, see fig. 10 ^b		-	30	-	ns	
Fall time	t _f				-	22	-	1
Gate input resistance	R _g	f = 1 MHz, open drain		0.5	-	3.2	Ω	
Drain-Source Body Diode Characteristic	cs	•			•	•	•	•
Continuous source-drain diode current	۱ _S	MOSFET symbol showing the		-	-	9.2	_	
Pulsed diode forward current ^a	I _{SM}	integral revers p - n junction			-	-	37	A
Body diode voltage		T 05 00		V _{GS} = 0 V ^b	-	-	1.5	V
	V _{SD}	$I_{\rm J} = 25 {}^{\circ}{\rm C}$, I _S = 9.2 A,	VGS – U V	-			-
Body diode reverse recovery time	V _{SD} t _{rr}				-	530	800	ns
Body diode reverse recovery time Body diode reverse recovery charge				it = 100 A/µs ^b			-	

Notes

a. Repetitive rating; pulse width limited by maximum junction temperature (see fig. 11)

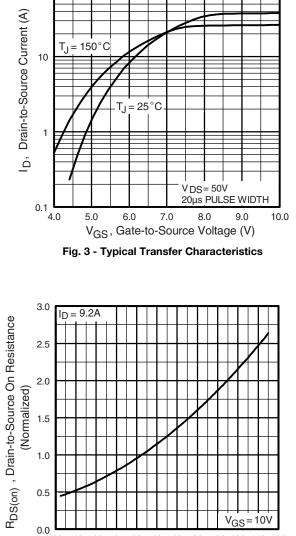
b. Pulse width \leq 300 µs; duty cycle \leq 2 %


c. C_{oss} effective is a fixed capacitance that gives the same charging time as C_{oss} while V_{DS} is rising from 0 % to 80 % V_{DS}

2 For technical questions, contact: <u>hvm@vishay.com</u>

Vishay Siliconix

TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)



20µs PULSE WIDTH Tj= 150 °C

100

10

V_{DS}, Drain-to-Source Voltage (V) Fig. 2 - Typical Output Characteristics

100

-60 60 80 100 120 140 160 -40 -20 0 20 40 T_J, Junction Temperature (°C)

Fig. 4 - Normalized On-Resistance vs. Temperature

10

1

THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000

Vishay Siliconix

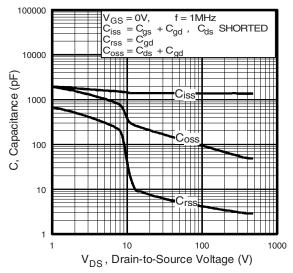


Fig. 5 - Typical Capacitance vs. Drain-to-Source Voltage

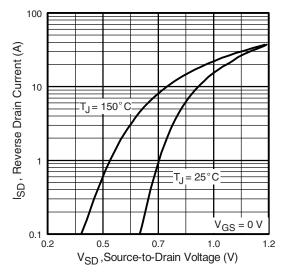


Fig. 7 - Typical Source-Drain Diode Forward Voltage

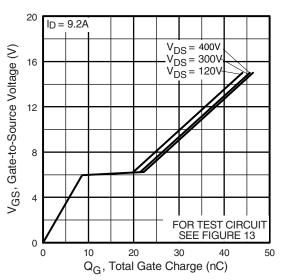


Fig. 6 - Typical Gate Charge vs. Gate-to-Source Voltage

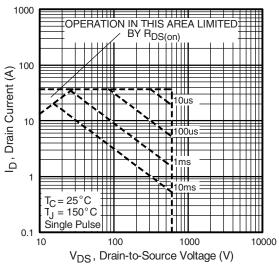


Fig. 8 - Maximum Safe Operating Area

4 For technical questions, contact: <u>hvm@vishay.com</u>

THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000

Vishay Siliconix

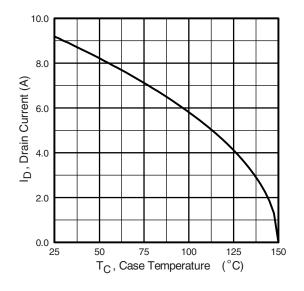


Fig. 9 - Maximum Drain Current vs. Case Temperature

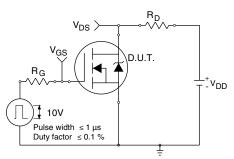


Fig. 10a - Switching Time Test Circuit

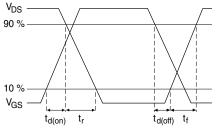


Fig. 10b - Switching Time Waveforms

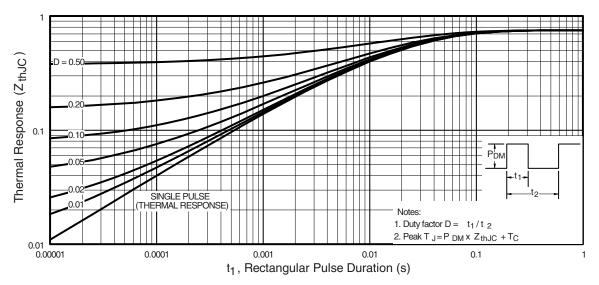


Fig. 11 - Maximum Effective Transient Thermal Impedance, Junction-to-Case

Downloaded from Arrow.com.

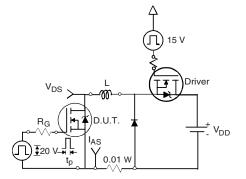
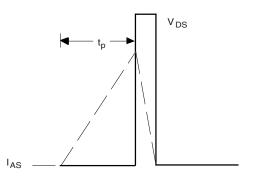



Fig. 12a - Unclamped Inductive Test Circuit

Vishay Siliconix

Fig. 12b - Unclamped Inductive Waveforms

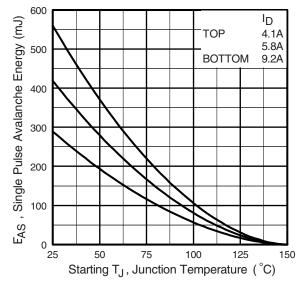
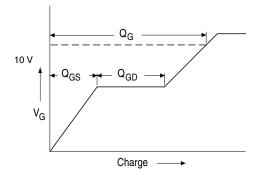



Fig. 12c - Maximum Avalanche Energy vs. Drain Current

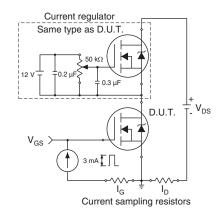
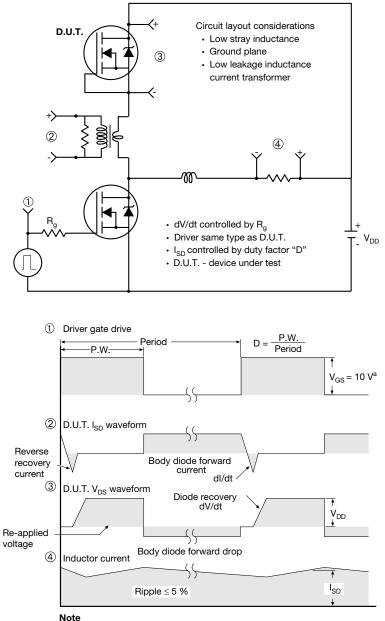


Fig. 13b - Gate Charge Test Circuit


6 For technical questions, contact: <u>hvm@vishay.com</u> Document Number: 91103

THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000

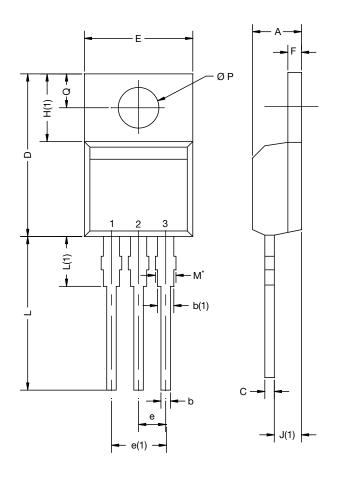
Vishay Siliconix

Peak Diode Recovery dV/dt Test Circuit

a. $V_{GS} = 5 V$ for logic level devices

Fig. 14 - For N-Channel

Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and reliability data, see www.vishay.com/ppg?91103.


7

For technical questions, contact: <u>hvm@vishay.com</u> THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT <u>www.vishay.com/doc?91000</u>

Vishay Siliconix

TO-220-1

DIM.	MILLIN	IETERS	INC	HES
DIIVI.	MIN.	MAX.	MIN.	MAX.
А	4.24	4.65	0.167	0.183
b	0.69	1.02	0.027	0.040
b(1)	1.14	1.78	0.045	0.070
С	0.36	0.61	0.014	0.024
D	14.33	15.85	0.564	0.624
E	9.96	10.52	0.392	0.414
е	2.41	2.67	0.095	0.105
e(1)	4.88	5.28	0.192	0.208
F	1.14	1.40	0.045	0.055
H(1)	6.10	6.71	0.240	0.264
J(1)	2.41	2.92	0.095	0.115
L	13.36	14.40	0.526	0.567
L(1)	3.33	4.04	0.131	0.159
ØP	3.53	3.94	0.139	0.155
Q	2.54	3.00	0.100	0.118

Note

• M* = 0.052 inches to 0.064 inches (dimension including protrusion), heatsink hole for HVM

Revison: 04-Nov-2021

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Hyperlinks included in this datasheet may direct users to third-party websites. These links are provided as a convenience and for informational purposes only. Inclusion of these hyperlinks does not constitute an endorsement or an approval by Vishay of any of the products, services or opinions of the corporation, organization or individual associated with the third-party website. Vishay disclaims any and all liability and bears no responsibility for the accuracy, legality or content of the third-party website or for that of subsequent links.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.