1.5Ω On Resistance, ± 15 V / +12 V / ± 5 V, Quad SPST Switches

DESCRIPTION

The DG1411E, DG1412E, DG1413E are $\pm 15 \mathrm{~V}$ precision monolithic quad single-pole single-throw (SPST) CMOS analog switches. Built on a new CMOS process, the Vishay Siliconix DG1411E, DG1412E, and DG1413E offer low on-resistance of 1.5Ω. The low and flat resistance over the full signal range ensures excellent linearity and low signal distortion. The new CMOS platform provides low power dissipation, minimized parasitic capacitance, and low charge injection.
The devices operate from either a single 4.5 V to 24 V power supply, or from dual $\pm 4.5 \mathrm{~V}$ to $\pm 15 \mathrm{~V}$ power supplies. The analog switches do not require a V_{L} logic supply, while all digital inputs have 0.8 V and 2 V logic thresholds to ensure low voltage TTL / CMOS compatibility.
The DG1411E, DG1412E, and DG1413E are bi-directional and support analog signals up to the supply voltage when on, and block them when off. The devices each feature four independently selectable SPST switches. The DG1411E is normally closed, while the DG1412E is normally open. The DG1413E has two normally open and two normally closed switches with guaranteed break-before-make operation.
Combined with fast 70 ns switching time, low and flat switch resistance. The devices are ideal for signal switching and relay replacement in data acquisition, industrial control and automation, communication, and A/V systems, in addition to medical instrumentation and automated test equipment.
The switches are available in RoHS-compliant, halogen-free TSSOP16 and QFN16 4 mm by 4 mm packages.

FEATURES

- 35 V supply max. rating
- On-resistance: 1.5Ω
- On-resistance flatness: 0.2Ω
- Channel to channel on-resistance match: 0.04Ω
- Supports single and dual supply operation
- Fully specified at $\pm 15 \mathrm{~V}, \pm 5 \mathrm{~V}$, and +12 V
- Integrated V_{L} supply
- 3 V logic compatible
- Low parasitic capacitance: $\mathrm{C}_{\mathrm{S}(\mathrm{OFF})}: 24 \mathrm{pF}, \mathrm{C}_{\mathrm{D}(\mathrm{ON})}: 87 \mathrm{pF}$
- Rail to rail signal handling
- Material categorization: for definitions of compliance please see www.vishay.com/doc?99912

BENEFITS

- Low insertion loss
- Low distortion
- Break-before-make switching
- Low charge injection over the full signal range

APPLICATIONS

- Medical and healthcare equipment
- Data acquisition system
- Industrial control and automation
- Test and measurement equipment
- Communication systems
- Battery powered systems
- Sample and hold circuits
- Audio and video signal switching
- Relay replacement

FUNCTIONAL BLOCK DIAGRAM AND PIN CONFIGURATION - DG1411E

TRUTH TABLE - DG1411E	
LOGIC	SWITCH
0	On
1	Off

Notes

- QFN exposed pad tied to V-
- N.C. = no connect
- Switches shown for logic " 0 " input

FUNCTIONAL BLOCK DIAGRAM AND PIN CONFIGURATION - DG1412E

TRUTH TABLE - DG1412E	
LOGIC	SWITCH
0	Off
1	On

Notes

- QFN exposed pad tied to V-
- N.C. = no connect
- Switches shown for logic "0" input

FUNCTIONAL BLOCK DIAGRAM AND PIN CONFIGURATION - DG1413E

TRUTH TABLE - DG1413E

LOGIC	SWITCHES 1, 4	SWITCHES 2, 3
0	Off	On
1	On	Off

Notes

- QFN exposed pad tied to V-
- N.C. = no connect
- Switches shown for logic "0" input

DEVICE OPTIONS					
PART NUMBER	CONFIGURATION	SWITCH FUNCTION	TEMPERATURE RANGE	PACKAGE	
DG1411EEN-T1-GE4	Quad SPST	NC	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	QFN $(4 \mathrm{~mm} \times 4 \mathrm{~mm}) 16 \mathrm{~L}$ (variation 2)	
DG1412EEN-T1-GE4	Quad SPST	NO	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	QFN $(4 \mathrm{~mm} \times 4 \mathrm{~mm}) 16 \mathrm{~L}$ (variation 2)	
DG1413EEN-T1-GE4	Quad SPST	$\mathrm{NC} / \mathrm{NO}$	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	QFN $(4 \mathrm{~mm} \times 4 \mathrm{~mm}) 16 \mathrm{~L}$ (variation 2)	
DG1411EEQ-T1-GE4	Quad SPST	NC	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	TSSOP-16	
DG1412EEQ-T1-GE4	Quad SPST	NO	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	TSSOP-16	
DG1413EEQ-T1-GE4	Quad SPST	$\mathrm{NC} / \mathrm{NO}$	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	TSSOP-16	

ABSOLUTE MAXIMUM RATINGS			
ELECTRICAL PARAMETER	CONDITIONS	LIMITS	UNIT
V+	Reference to GND	-0.3 to +25	V
V -	Reference to GND	+0.3 to -25	
V+ to V-		+35	
Analog inputs (S or D)		(V-) - 0.3 to (V+)+0.3	
Digital inputs		GND - 0.3 to ($\mathrm{V}+$) + 0.3	
Maximum continuous switch current	TSSOP-16, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	190	mA
	QFN ($4 \mathrm{~mm} \times 4 \mathrm{~mm}$) $16 \mathrm{~L}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	250	
	TSSOP-16, $\mathrm{T}_{\mathrm{A}}=125^{\circ} \mathrm{C}$	90	
	QFN ($4 \mathrm{~mm} \times 4 \mathrm{~mm}$) $16 \mathrm{~L}, \mathrm{~T}_{\mathrm{A}}=125^{\circ} \mathrm{C}$	100	
Maximum pulse switch current	Pulse at $1 \mathrm{~ms}, 10 \%$ duty cycle	500	
Thermal resistance	TSSOP-16	130	C / W
	QFN ($4 \mathrm{~mm} \times 4 \mathrm{~mm}$) 16L	32	
ESD / HBM	JS-001	2000	V
ESD / CDM	JS-002	750	
Latch up	JESD78	300	mA
Temperature			
Operating temperature		-40 to +125	${ }^{\circ} \mathrm{C}$
Max. operating junction temperature		150	
Operating junction temperature		125	
Storage temperature		-65 to +150	

[^0]

ELECTRICAL CHARACTERISTICS - Single 12 V supply							
PARAMETER	SYMBOL	TEST CONDITIONS UNLESS OTHERWISE SPECIFIED $\begin{aligned} \mathrm{V}+ & =12 \mathrm{~V}, \mathrm{~V}-=-0 \mathrm{~V} \\ \mathrm{~V}_{\text {INH }} & =2 \mathrm{~V}, \mathrm{~V}_{\text {INL }} \end{aligned}=0.8 \mathrm{~V} .$	$+25{ }^{\circ} \mathrm{C}$	$\begin{gathered} -40^{\circ} \mathrm{C} \text { to } \\ +85^{\circ} \mathrm{C} \end{gathered}$	$\begin{aligned} & -40^{\circ} \mathrm{C} \text { to } \\ & +125^{\circ} \mathrm{C} \end{aligned}$	TYP. / MAX.	UNIT
Analog Switch							
Analog signal range	$\mathrm{V}_{\text {ANALOG }}$		0 to V+				V
Drain-source on-resistance	$\mathrm{R}_{\mathrm{DS} \text { (on) }}$	$\begin{gathered} \mathrm{V}_{\mathrm{S}}=0 \mathrm{~V} \text { to } 10 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=-10 \mathrm{~mA} ; \\ \mathrm{V}+=10.8 \mathrm{~V}, \mathrm{~V}-=0 \mathrm{~V} \end{gathered}$	2.5	-	-	Typ.	Ω
			3.1	3.8	4.4	Max.	
On-resistance flatness	$\mathrm{R}_{\text {flatan) }}$	$V_{S}=0 \mathrm{~V}$ to 10 V ; $\mathrm{I}_{\mathrm{S}}=-10 \mathrm{~mA}$	0.7	-	-	Typ.	Ω
			0.9	1	1.1	Max.	
On-resistance matching	$\Delta \mathrm{R}_{\mathrm{DS} \text { (on) }}$		0.04	-	-	Typ.	
			0.19	0.22	0.25	Max.	
Switch off leakage current	$\mathrm{I}_{\mathrm{s}} / \mathrm{d}_{\text {(foff }}$	$\begin{gathered} \mathrm{V}+=10.8 \mathrm{~V}, \mathrm{~V}-=0 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{S}}=1 \mathrm{~V} / 10 \mathrm{~V} ; \mathrm{V}_{\mathrm{D}}=10 \mathrm{~V} / 1 \mathrm{~V} \end{gathered}$	± 0.02	-	-	Typ.	nA
			± 0.55	± 1.2	± 10	Max.	
Channel on leakage current	$I_{\text {d(on) }}$	$\mathrm{V}_{\mathrm{S}}=\mathrm{V}_{\mathrm{D}}=3.2 \mathrm{~V} / 10 \mathrm{~V}$	± 0.01	-	-	Typ.	
			± 1	± 2	± 35	Max.	
Digital Control							
Input, high voltage	$\mathrm{V}_{\text {INH }}$		-	-	2	Min.	V
Input, low voltage	$\mathrm{V}_{\text {INL }}$		-	-	0.8	Max.	
Input leakage	IN	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{GND}}$ or V_{+}	0.001	-	-	Typ.	$\mu \mathrm{A}$
			-	-	± 0.1	Max.	
Digital input capacitance	$\mathrm{C}_{\text {IN }}$		3.5	-	-	Typ.	pF
Dynamic Characteristics							
Break-before-make time	topen	$\begin{gathered} \mathrm{V}_{\mathrm{S} 1}=\mathrm{V}_{\mathrm{S} 2}=8 \mathrm{~V} \\ \mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} \end{gathered}$	90	-	-	Typ.	ns
			-	-	50	Min.	
Turn-on time	t_{ON}	$\begin{gathered} V_{S}=8 \mathrm{~V} \\ \mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} \end{gathered}$	150	-	-	Typ.	
			190	230	260	Max.	
Turn-off time	toff		60	-	-	Typ.	
			100	110	120	Max.	
Charge injection	$\mathrm{Q}_{\mathrm{INj}}$	$\mathrm{C}_{\mathrm{L}}=1 \mathrm{nF}, \mathrm{R}_{\mathrm{GEN}}=0 \Omega, \mathrm{~V}_{\mathrm{S}}=6 \mathrm{~V}$	6	-	-	Typ.	pC
Off isolation	OIRR	$\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, 100 \mathrm{kHz}$	-78	-	-	Typ.	dB
Cross talk	$\mathrm{X}_{\text {TALK }}$	$\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, 1 \mathrm{MHz}$	-106	-	-	Typ.	
Insertion loss		$\mathrm{f}=1 \mathrm{MHz}, \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$	-0.23	-	-	Typ.	
Bandwidth, -3 dB	BW	$\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$	150	-	-	Typ.	MHz
Source off capacitance	$\mathrm{C}_{\text {S(fff) }}$	$\mathrm{f}=1 \mathrm{MHz}, \mathrm{V}_{\mathrm{S}}=6 \mathrm{~V}$	31	-	-	Typ.	pF
Drain off capacitance	$\mathrm{C}_{\mathrm{D} \text { (off) }}$		29	-	-	Typ.	
Drain on capacitance	$\mathrm{C}_{\mathrm{D} \text { (on) }}$		93	-	-	Typ.	
Power Requirements							
Power supply range		GND $=0 \mathrm{~V}, \mathrm{~V}-=0 \mathrm{~V}$	$\pm 5 \mathrm{~V}$ min. $/ \pm 16.5$ max				V
Power supply current	I+	Digital inputs 0 or $\mathrm{V}_{+}$$\mathrm{V}+=13.2 \mathrm{~V}$	0.001	-	-	Typ.	$\mu \mathrm{A}$
			-	-	1	Max.	
		$\mathrm{IN} 1=\mathrm{IN} 2=\mathrm{IN} 3=\mathrm{IN} 4=5 \mathrm{~V}$	54	-	-	Typ.	
			-	150	190	Max.	

ELECTRICAL CHARACTERISTICS - ± 5 V supply

PARAMETER	SYMBOL	TEST CONDITIONS UNLESS OTHERWISE SPECIFIED $\begin{gathered} \mathrm{V}_{+}=5 \mathrm{~V}, \mathrm{~V}-=-5 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{INH}}=2 \mathrm{~V}, \mathrm{~V}_{\mathrm{INL}}=0.8 \mathrm{~V} \end{gathered}$	$+25{ }^{\circ} \mathrm{C}$	$\begin{gathered} -40^{\circ} \mathrm{C} \text { to } \\ +85^{\circ} \mathrm{C} \end{gathered}$	$\begin{aligned} & -40^{\circ} \mathrm{C} \text { to } \\ & +125{ }^{\circ} \mathrm{C} \end{aligned}$	TYP. / MAX.	UNIT
Analog Switch							
Analog signal range	$\mathrm{V}_{\text {ANALOG }}$		V - to $\mathrm{V}+$				V
Drain-source on-resistance	$\mathrm{R}_{\mathrm{DS} \text { (on) }}$	$\begin{gathered} \mathrm{V}_{\mathrm{S}}= \pm 4.5 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=-10 \mathrm{~mA} \\ \mathrm{~V}+=4.5 \mathrm{~V}, \mathrm{~V}-=-4.5 \mathrm{~V} \end{gathered}$	3	-	-	Typ.	Ω
			3.3	4	4.7	Max.	
On-resistance flatness	$\mathrm{R}_{\text {flatan) }}$	$\mathrm{V}_{\mathrm{S}}= \pm 4.5 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=-10 \mathrm{~mA}$	0.7	-	-	Typ.	
			0.9	1	1.1	Max.	
On-resistance matching	$\Delta \mathrm{R}_{\mathrm{DS} \text { (on) }}$		0.04	-	-	Typ.	
			0.19	0.22	0.25	Max.	
Switch off leakage current	$\mathrm{I}_{\mathrm{s}} / \mathrm{l}_{\text {(foff }}$	$\begin{gathered} \mathrm{V}+=5.5 \mathrm{~V}, \mathrm{~V}-=-5.5 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{S}}= \pm 4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=\mp 4.5 \mathrm{~V} \end{gathered}$	± 0.004	-	-	Typ.	nA
			± 0.5	± 1.5	± 10	Max.	
Channel on leakage current	$I_{\text {d(on) }}$	$\mathrm{V}_{S}=\mathrm{V}_{\mathrm{D}}= \pm 4.5 \mathrm{~V}$	± 0.003	-	-	Typ.	
			± 0.5	± 2	± 35	Max.	
Digital Control							
Input, high voltage	$\mathrm{V}_{\text {INH }}$		-	-	2	Min.	V
Input, low voltage	$\mathrm{V}_{\text {INL }}$		-	-	0.8	Max.	
Input leakage	In	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{GND}}$ or V_{+}	0.001	-	-	Typ.	$\mu \mathrm{A}$
			-	-	± 0.1	Max.	
Digital input capacitance	$\mathrm{C}_{\text {IN }}$		3.5	-	-	Typ.	pF
Dynamic Characteristics							
Break-before-make time	topen	$\begin{gathered} \mathrm{V}_{\mathrm{S} 1}=\mathrm{V}_{\mathrm{S} 2}=3 \mathrm{~V} \\ \mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} \end{gathered}$	110	-	-	Typ.	ns
			-	-	65	Min.	
Turn-on time	t_{ON}	$\begin{gathered} V_{S}=3 \mathrm{~V} \\ \mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} \end{gathered}$	280	-	-	Typ.	
			330	400	440	Max.	
Turn-off time	toff		180	-	-	Typ.	
			220	260	280	Max.	
Charge injection	$\mathrm{Q}_{\mathrm{inj}}$	$\mathrm{C}_{\mathrm{L}}=1 \mathrm{nF}, \mathrm{R}_{\mathrm{GEN}}=0 \Omega, \mathrm{~V}_{\mathrm{S}}=0 \mathrm{~V}$	7	-	-	Typ.	pC
Off isolation	OIRR	$\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, 100 \mathrm{kHz}$	-78	-	-	Typ.	dB
Cross talk	$\mathrm{X}_{\text {TALK }}$	$\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, 1 \mathrm{MHz}$	-106	-	-	Typ.	
Insertion loss		$\mathrm{f}=1 \mathrm{MHz}, \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$	-0.26	-	-	Typ.	\%
Bandwidth, -3 dB	BW	$\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$	160	-	-	Typ.	MHz
Source off capacitance	$\mathrm{C}_{S_{\text {(off) }}}$	$\mathrm{f}=1 \mathrm{MHz}, \mathrm{V}_{\mathrm{S}}=0 \mathrm{~V}$	34	-	-	Typ.	pF
Drain off capacitance	$\mathrm{C}_{\mathrm{D} \text { (off) }}$		31	-	-	Typ.	
Drain on capacitance	$\mathrm{C}_{\text {D(on) }}$		94	-	-	Typ.	
Power Requirements							
Power supply range		GND $=0 \mathrm{~V}$	$\pm 4.5 \mathrm{~V}$ min. / ± 16.5 max.				V
Power supply current	$1+$	Digital inputs 0 V or $\mathrm{V}+$$\mathrm{V}+=5.5 \mathrm{~V}, \mathrm{~V}-=-5.5 \mathrm{~V}$	0.001	-	-	Typ.	$\mu \mathrm{A}$
			-	-	1	Max.	
	I-	Digital inputs $=0 \mathrm{~V}$ or V_{+}	0.001	-	-	Typ.	
			-	-	1	Max.	

TYPICAL CHARACTERISTICS $\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right.$, unless otherwise noted)

On-Resistance vs. Analog Voltage

On-Resistance vs. Analog Voltage

Leakage Current vs. Temperature

On-Resistance vs. Temperature

On-Resistance vs. Temperature

On-Resistance vs. Temperature

TYPICAL CHARACTERISTICS $\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right.$, unless otherwise noted)

Leakage Current vs. Temperature

Leakage Current vs. Temperature

Charge Injection vs. Analog Voltage

I+ - Supply Current vs. Logic Level

Switching Time vs. Temperature

BW, OIRR, $X_{\text {TALK }}$ vs. Frequency

TYPICAL CHARACTERISTICS $\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right.$, unless otherwise noted)

THD + N vs. Frequency

Logic Threshold vs. Supply Voltage

TEST CIRCUITS

Logic "1" = Switch On
Logic input waveforms inverted for switches that have the opposite logic sense.

Fig. 1 - Switching Time

IN depends on switch configuration: input polarity determined by sense of switch.

Fig. 2 - Charge Injection

Fig. 3 - Off-Isolation

Fig. 4 - Channel Off/On Capacitance

[^1]
QFN 4x4-16L Case Outline

TIP VIEW

BOTTOM VIEW

SIDE VIEW

DIM	VARIATION 1						VARIATION 2					
	MILLIMETERS ${ }^{(1)}$			INCHES			MILLIMETERS ${ }^{(1)}$			INCHES		
	MIN.	NOM.	MAX.									
A	0.75	0.85	0.95	0.029	0.033	0.037	0.75	0.85	0.95	0.029	0.033	0.037
A1	0	-	0.05	0	-	0.002	0	-	0.05	0	-	0.002
A3	0.20 ref.			0.008 ref.			0.20 ref.			0.008 ref.		
b	0.25	0.30	0.35	0.010	0.012	0.014	0.25	0.30	0.35	0.010	0.012	0.014
D	4.00 BSC			0.157 BSC			4.00 BSC			0.157 BSC		
D2	2.0	2.1	2.2	0.079	0.083	0.087	2.5	2.6	2.7	0.098	0.102	0.106
e	0.65 BSC			0.026 BSC			0.65 BSC			0.026 BSC		
E	4.00 BSC			0.157 BSC			4.00 BSC			0.157 BSC		
E2	2.0	2.1	2.2	0.079	0.083	0.087	2.5	2.6	2.7	0.098	0.102	0.106
K	0.20 min .			0.008 min .			0.20 min .			0.008 min .		
L	0.5	0.6	0.7	0.020	0.024	0.028	0.3	0.4	0.5	0.012	0.016	0.020
$N^{(3)}$	16			16			16			16		
$\mathrm{Nd}^{(3)}$	4			4			4			4		
$\mathrm{Ne}^{(3)}$	4			4			4			4		

Notes

(1) Use millimeters as the primary measurement.
(2) Dimensioning and tolerances conform to ASME Y14.5M. - 1994.
(3) N is the number of terminals. Nd and Ne is the number of terminals in each D and E site respectively.
(4) Dimensions b applies to plated terminal and is measured between 0.15 mm and 0.30 mm from terminal tip.
(5) The pin 1 identifier must be existed on the top surface of the package by using identification mark or other feature of package body.
(6) Package warpage max. 0.05 mm .

```
ECN: S13-0893-Rev. B, 22-Apr-13
DWG: }589
```

TSSOP: 16-LEAD

Symbols	DIMENSIONS IN MILLIMETERS		
	Min	Nom	Max
A	-	1.10	1.20
A1	0.05	0.10	0.15
A2	-	1.00	1.05
B	0.22	0.28	0.38
C	-	0.127	-
D	4.90	5.00	5.10
E	6.10	6.40	6.70
E1	4.30	4.40	4.50
e	-	0.65	-
L	0.50	0.60	0.70
L1	0.90	1.00	1.10
y	-	-	0.10
11	0°	3°	6°
ECN: S-61920-Rev. D, 23-Oct-06			
DWG: 5624			

www.vishay.com

RECOMMENDED MINIMUM PAD FOR TSSOP-16

Recommended Minimum Pads Dimensions in inches (mm)

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

[^0]: Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

[^1]: Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and reliability data, see www.vishay.com/ppg?75104.

