

Insulated Gate Bipolar Transistor Ultralow V_{CE(on)}, 342 A

SOT-227

PRODUCT SUMMARY				
V _{CES}	600 V			
V _{CE(on)} (typical) at 200 A, 25 °C	1.33 V			
I_C at $T_C = 97$ °C ⁽¹⁾	200 A			

Note

(1) Maximum I_{RMS} current admitted 100 A to do not exceed the maximum temperature of terminals

FEATURES

 Standard: Optimized for minimum saturation voltage and low speed up to 5 kHz

Ro

- Lowest conduction losses available
- Fully isolated package (2500 V_{AC})
- Very low internal inductance (5 nH typical)
- Industry standard outline
- UL approved file E78996
- Compliant to RoHS directive 2002/95/EC
- Designed and qualified for industrial level

BENEFITS

- Designed for increased operating efficiency in power conversion: UPS, SMPS, TIG welding, induction heating
- Easy to assemble and parallel
- · Direct mounting to heatsink
- Plug-in compatible with other SOT-227 packages

PARAMETER	SYMBOL	TEST CONDITIONS	MAX.	UNITS	
Collector to emitter breakdown voltage	V _{CES}		600	V	
Ocation of a lighter comment	ı (1)	T _C = 25 °C	342		
Continuous collector current	I _C ⁽¹⁾	T _C = 97 °C	200		
Pulsed collector current	I _{CM}	Repetitive rating; $V_{GE} = 20 \text{ V}$, pulse width limited by maximum junction temperature See fig. 15	400	А	
Clamped Inductive load current	I _{LM}	$V_{CC} = 80 \% (V_{CES}), V_{GE} = 20 V,$ $L = 10 \ \mu H, R_g = 2.0 \ \Omega,$ See fig. 14	400		
Gate to emitter voltage	V _{GE}		± 20	V	
Reverse voltage avalanche energy	E _{ARV}	Repetitive rating; pulse width limited by maximum junction temperature	155	mJ	
RMS isolation voltage	V _{ISOL}	Any terminal to case, t = 1 minute	2500	V	
Maximum power dissipation	-	T _C = 25 °C	781	W	
	P _D	T _C = 100 °C	312		
Operating junction and storage temperature range	T _J , T _{Stg}		- 55 to + 150	°C	
Mounting torque		6-32 or M3 screw	12 (1.3)	lbf ⋅ in (N ⋅ n	

Note

 $^{(1)}$ Maximum I_{RMS} current admitted 100 A to do not exceed the maximum temperature of terminals

THERMAL AND MECHANICAL SPECIFICATIONS					
PARAMETER SYMBOL TYP. MAX.		UNITS			
Junction to case	R _{thJC}	-	0.16	°C/W	
Case to sink, flat, greased surface	R _{thCS}	0.05	-	C/VV	
Weight of module		30	-	g	

Document Number: 94363 Revision: 22-Jul-10

GA200SA60SP

Vishay Semiconductors

Insulated Gate Bipolar Transistor Ultralow V_{CE(on)}, 342 A

ELECTRICAL SPECIFICATIONS (T _J = 25 °C unless otherwise noted)							
PARAMETER	SYMBOL	TEST CONDITIONS		MIN.	TYP.	MAX.	UNITS
Collector to emitter breakdown voltage	V _{(BR)CES}	$V_{GE} = 0 \text{ V}, I_{C} = 250 \mu\text{A}$		600	-	-	V
Emitter to collector breakdown voltage	V _{(BR)ECS} (1)	$V_{GE} = 0 \text{ V}, I_{C} = 1.0 \text{ A}$	V _{GE} = 0 V, I _C = 1.0 A		-	-]
Temperature coeff. of breakdown voltage	$\Delta V_{(BR)CES}/\Delta T_{J}$	$V_{GE} = 0 \text{ V}, I_{C} = 1.0 \text{ mA}$		ı	0.62	-	V/°C
Collector to emitter saturation voltage V ₀	V _{CE(on)}	I _C = 100 A	V _{GE} = 15 V See fig. 2, 5	-	1.10	1.3	- V
		I _C = 200 A		-	1.33	-	
		I _C = 100 A, T _J = 150 °C		-	1.02	-	
Gate threshold voltage	V _{GE(th)}	$V_{CE} = V_{GE}, I_{C} = 250 \mu A$		3.0	-	6.0	
Temperature coeff. of threshold voltage	$\Delta V_{GE(th)}/\Delta T_{J}$	$V_{CE} = V_{GE}$, $I_C = 2 \text{ mA}$		-	- 10	-	mV/°C
Forward transconductance	9fe ⁽²⁾	V _{CE} = 100 V, I _C = 100 A	١	90	150	-	S
Zero gate voltage collector current	I _{CES}	V _{GE} = 0 V, V _{CE} = 600 V		-	-	1.0	mA
		V _{GE} = 0 V, V _{CE} = 10 V,	T _J = 150 °C	-	-	10	IIIA
Gate to emitter leakage current	I _{GES}	V _{GE} = ± 20 V		-	-	± 250	nA

Notes

- $^{(1)}~$ Pulse width $\leq 80~\mu s;~duty~factor \leq 0.1~\%$
- $^{(2)}\,$ Pulse width 5.0 $\mu s,$ single shot

PARAMETER	SYMBOL	TEST CONDITIONS	MIN.	TYP.	MAX.	UNITS
Total gate charge (turn-on)	Qg	I _C = 100 A	-	770	1200	nC
Gate emitter charge (turn-on)	Q _{ge}	V _{CC} = 400 V	-	100	150	
Gate collector charge (turn-on)	Q _{gc}	V _{GE} = 15 V; See fig. 8	-	260	380	
Turn-on delay time	t _{d(on)}	T _{.1} = 25 °C	-	78	-	- ns
Rise time	t _r	$I_{\rm C} = 100 \text{A}$	-	56	-	
Turn-off delay time	t _{d(off)}	$V_{CC} = 480 \text{ V}$	-	890	1300	
Fall time	t _f	V _{GE} = 15 V	-	390	580	
Turn-on switching loss	E _{on}	R_g = 2.0 Ω Energy losses include "tail" See fig. 9, 10, 13	-	0.98	-	mJ
Turn-off switching loss	E _{off}		-	17.4	-	
Total switching loss	E _{ts}		-	18.4	25.5	
Turn-on delay time	t _{d(on)}	T_J = 150 °C I_C = 100 A, V_{CC} = 480 V V_{GE} = 15 V, R_g = 2.0 Ω Energy losses include "tail" See fig. 10, 11, 13	-	72	-	- ns
Rise time	t _r		-	60	-	
Turn-off delay time	t _{d(off)}		-	1500	-	
Fall time	t _f		-	660	-	
Total switching loss	E _{ts}		-	35.7	-	mJ
Internal emitter inductance	L _E	Between lead, and center of the die contact	-	5.0	-	nH
Input capacitance	C _{ies}	V _{GE} = 0 V	-	16 250	-	
Output capacitance	C _{oes}	V _{CC} = 30 V	-	1040	-	pF
Reverse transfer capacitance	C_res	f = 1.0 MHz; See fig. 7	-	190	-	1

Insulated Gate Bipolar Transistor Ultralow V_{CE(on)}, 342 A

Vishay Semiconductors

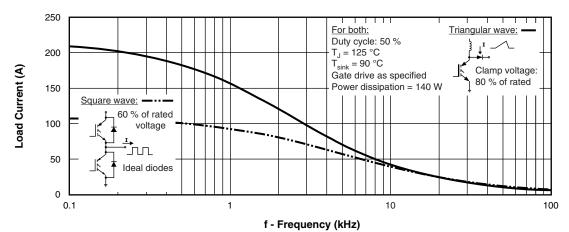


Fig. 1 - Typical Load Current vs. Frequency (Load Current = I_{RMS} of Fundamental)

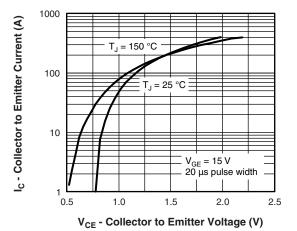


Fig. 2 - Typical Output Characteristics

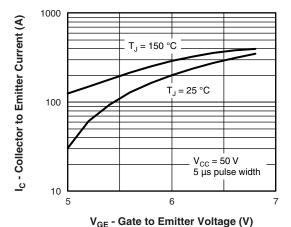


Fig. 3 - Typical Transfer Characteristics

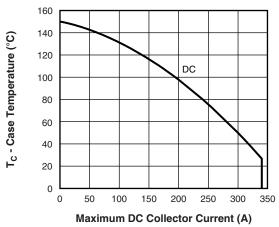


Fig. 4 - Maximum Collector Current vs. Case Temperature

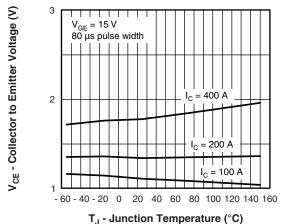


Fig. 5 - Typical Collector to Emitter Voltage vs. Junction Temperature

Insulated Gate Bipolar Transistor Ultralow V_{CE(on)}, 342 A

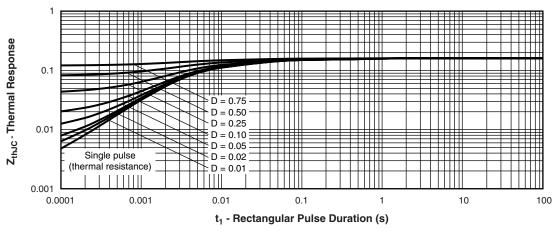


Fig. 6 - Maximum Effective Transient Thermal Impedance, Junction to Case

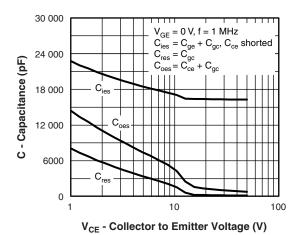


Fig. 7 - Typical Capacitance vs. Collector to Emitter Voltage

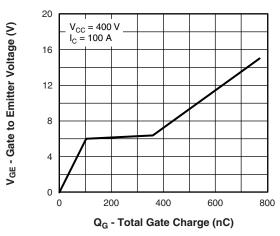


Fig. 8 - Typical Gate Charge vs. Gate to Emitter Voltage

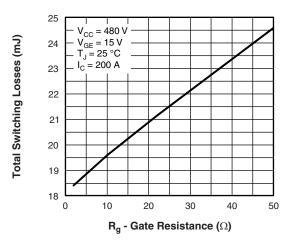


Fig. 9 - Typical Switching Losses vs. Gate Resistance

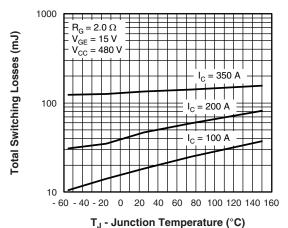


Fig. 10 - Typical Switching Losses vs.
Junction Temperature

Insulated Gate Bipolar Transistor Ultralow V_{CE(on)}, 342 A

Vishay Semiconductors

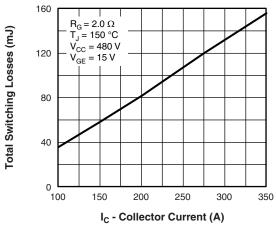
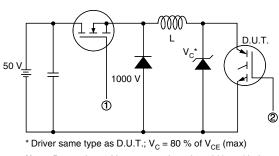



Fig. 11 - Typical Switching Losses vs. Collector Current

Note: Due to the 50 V power supply, pulse width and inductor will increase to obtain rated ${\rm I_d}$

Fig. 13a - Clamped Inductive Load Test Circuit

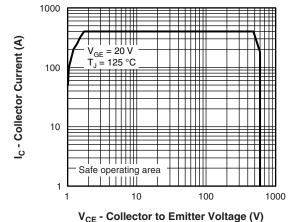


Fig. 12 - Turn-Off SOA

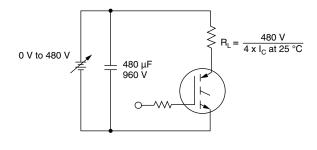


Fig. 13b - Pulsed Collector Current Test Circuit

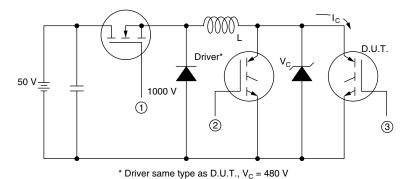


Fig. 14a - Switching Lost Test Circuit

Insulated Gate Bipolar Transistor Ultralow V_{CE(on)}, 342 A

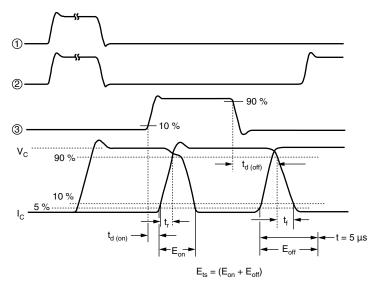
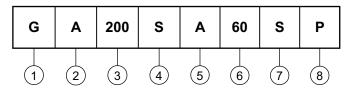
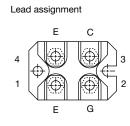



Fig. 14b - Switching Loss Waveforms

ORDERING INFORMATION TABLE

Device code

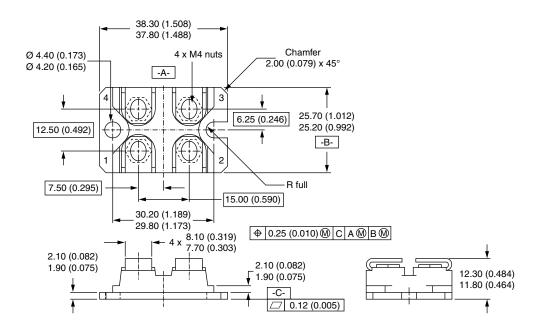
- Insulated Gate Bipolar Transistor (IGBT)
- 2 Generation 4, IGBT silicon, DBC construction
- 3 Current rating (200 = 200 A)
- 4 Single switch, no diode
- **5** SOT-227
- 6 Voltage rating (60 = 600 V)
- 7 Speed/type (S = Standard speed)
- None = Standard production
 - P = Lead (Pb)-free



Insulated Gate Bipolar Transistor Ultralow V_{CE(on)}, 342 A

Vishay Semiconductors

CIRCUIT CONFIGURATION



LINKS TO RELATED DOCUMENTS				
Dimensions <u>www.vishay.com/doc?95036</u>				
Packaging information	www.vishay.com/doc?95037			

SOT-227

DIMENSIONS in millimeters (inches)

Notes

- Dimensioning and tolerancing per ANSI Y14.5M-1982
- · Controlling dimension: millimeter

Document Number: 95036 Revision: 28-Aug-07

Legal Disclaimer Notice

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and/or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

Material Category Policy

Vishay Intertechnology, Inc. hereby certifies that all its products that are identified as RoHS-Compliant fulfill the definitions and restrictions defined under Directive 2011/65/EU of The European Parliament and of the Council of June 8, 2011 on the restriction of the use of certain hazardous substances in electrical and electronic equipment (EEE) - recast, unless otherwise specified as non-compliant.

Please note that some Vishay documentation may still make reference to RoHS Directive 2002/95/EC. We confirm that all the products identified as being compliant to Directive 2002/95/EC conform to Directive 2011/65/EU.

Vishay Intertechnology, Inc. hereby certifies that all its products that are identified as Halogen-Free follow Halogen-Free requirements as per JEDEC JS709A standards. Please note that some Vishay documentation may still make reference to the IEC 61249-2-21 definition. We confirm that all the products identified as being compliant to IEC 61249-2-21 conform to JEDEC JS709A standards.

Revision: 02-Oct-12 Document Number: 91000