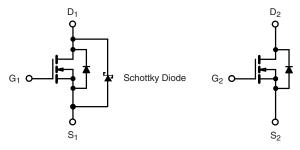


Dual N-Channel 30-V (D-S) MOSFET with Schottky Diode

PRODUCT SUMMARY								
	V _{DS} (V)	$R_{DS(on)}(\Omega)$	I _D (A) ^a	Q _g (Typ.)				
Channel-1	30	0.0160 at V _{GS} = 10 V	8.0 ^e	19				
	00	0.0186 at $V_{GS} = 4.5 \text{ V}$	8.0 ^e	13				
Channel-2	30	0.0264 at $V_{GS} = 10 \text{ V}$	8.0 ^e	6				
Onamer-2	30	0.0290 at $V_{GS} = 4.5 \text{ V}$	8.0 ^e					


FEATURES

- Halogen-free According to IEC 61249-2-21 Definition
- SkyFET[®] Monolithic TrenchFET[®]
 Power MOSFET and Schottky Diode
- 100 % R_q and UIS Tested
- Compliant to RoHS Directive 2002/95/EC

APPLICATIONS

- Notebook Logic DC-DC
- Low Current DC-DC

Ordering Information: Si4622DY-T1-E3 (Lead (Pb)-free)

Top View

SO-8

Si4622DY-T1-GE3 (Lead (Pb)-free and Halogen-free)

D₁

D₂

N-Channel MOSFET

N-Channel MOSFET

ABSOLUTE MAXIMUM RATINGS Parameter	Symbol	Channel-1	Channel-2	Unit		
Drain-Source Voltage	V _{DS}	30	30			
Gate-Source Voltage	V _{GS}	± 20	± 16	V		
<u> </u>	T _C = 25 °C	<u> </u>	8 ^e	8 ^e		
Continuous Drain Current (T _{.I} = 150 °C)	T _C = 70 °C	I_	8 ^e	6.7		
Continuous Brain Guirent (1) = 130 C)	T _A = 25 °C	I _D	8 ^{b, c, e}	6.7 ^{b, c}		
	T _A = 70 °C		7.2 ^{b, c}	5.3 ^{b, c}	Α	
Pulsed Drain Current (10 µs Pulse Width)	I _{DM}	60	30	^		
Source-Drain Current Diode Current	T _C = 25 °C	- I _S	2.8	2.6		
Source-Drain Guitent Diode Guitent	T _A = 25 °C		1.8 ^{b, c}	1.7 ^{b, c}		
Single Pulse Avalanche Current	L = 0.1 mH	I _{AS}	25	15		
Single Pulse Avalanche Energy	L = 0.111111	E _{AS}	31.2	11.2	mJ	
	T _C = 25 °C	- P _D	3.3	3.1		
Maximum Power Dissipation	T _C = 70 °C		2.1	2.0	w	
Maximum Fower Dissipation	T _A = 25 °C		2.2 ^{b, c}	2.0 ^{b, c}	VV	
	T _A = 70 °C		1.4 ^{b, c}	1.3 ^{b, c}		
Operating Junction and Storage Temperature R	T _J , T _{stq}	- 55 t	ŷ			

THERMAL RESISTANCE RATINGS								
Channel-1 Channel-2								
Parameter		Symbol	Тур.	Max.	Тур.	Max.	Unit	
Maximum Junction-to-Ambient ^{b, d}	t ≤ 10 s	R _{thJA}	45	56	55	62.5	°C/W	
Maximum Junction-to-Foot (Drain)	Steady State	R _{thJF}	29	38	33	40	⊘/ V V	

Notes:

- a. Based on $T_C = 25$ °C.
- b. Surface Mounted on 1" x 1" FR4 board.
- c. t = 10 s.
- d. Maximum under Steady State conditions is 110 °C/W (Channel-1) and 110 °C/W (Channel-2).
- e. Package limited.

Document Number: 68695 S09-0764-Rev. B, 04-May-09

Si4622DY

Vishay Siliconix

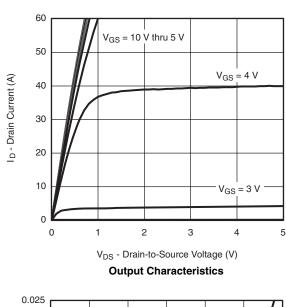
Parameter	Symbol	Test Conditions			Тур.	Max.	Unit	
Static				<u> </u>				
Dunin Course Buselideum Valte ve	V	$V_{GS} = 0 \text{ V}, I_D = 250 \mu\text{A}$ Ch-		30			V	
Drain-Source Breakdown Voltage	V _{DS}	$V_{GS} = 0 \text{ V}, I_D = 250 \mu\text{A}$	Ch-2	30			V	
V _{DS} Temperature Coefficient	$\Delta V_{DS}/T_{J}$	I _D = 250 μA	Ch-2		33		\//00	
V _{GS(th)} Temperature Coefficient	$\Delta V_{GS(th)}/T_J$	I _D = 250 μA	Ch-2		- 4.7		mV/°C	
0 . 7	V	$V_{DS} = V_{GS}$, $I_D = 1 \text{ mA}$	Ch-1	1.5		2.5	V	
Gate Threshold Voltage	V _{GS(th)}	$V_{DS} = V_{GS}$, $I_D = 1 \text{ mA}$	Ch-2	1		2.2		
Cata Badu Laglaga		$V_{DS} = 0 \text{ V}, V_{GS} = \pm 20 \text{ V}$	Ch-1			100	nA	
Gate-Body Leakage	I _{GSS}	$V_{DS} = 0 \text{ V}, V_{GS} = \pm 16 \text{ V}$	Ch-2			100		
		$V_{DS} = 30 \text{ V}, V_{GS} = 0 \text{ V}$	Ch-1		0.04	0.2	mA	
Zana Cata Valtana Duain Comment		$V_{DS} = 30 \text{ V}, V_{GS} = 0 \text{ V}$	Ch-2			1	μΑ	
Zero Gate Voltage Drain Current	IDSS	$V_{DS} = 30 \text{ V}, V_{GS} = 0 \text{ V}, T_{J} = 100 ^{\circ}\text{C}$	Ch-1		4.4	44	mA	
		$V_{DS} = 30 \text{ V}, V_{GS} = 0 \text{ V}, T_{J} = 100 ^{\circ}\text{C}$	Ch-2			5	μΑ	
b		$V_{DS} \ge 5 \text{ V}, V_{GS} = 10 \text{ V}$	Ch-1	25				
On-State Drain Current ^b	I _{D(on)}	$V_{DS} \ge 5 \text{ V}, V_{GS} = 10 \text{ V}$	Ch-2	20			Α	
		V _{GS} = 10 V, I _D = 9.6 A	Ch-1		0.0132	0.0160	Ω	
	R _{DS(on)}	$V_{GS} = 10 \text{ V}, I_D = 6.7 \text{ A}$	Ch-2		0.022	0.0264		
Drain-Source On-State Resistance ^b		$V_{GS} = 4.5 \text{ V}, I_D = 8.9 \text{ A}$	Ch-1		0.0155	0.0186		
		$V_{GS} = 4.5 \text{ V}, I_D = 6.4 \text{ A}$	Ch-2		0.0240	0.0290		
	-	V _{DS} = 15 V, I _D = 9.6 A	Ch-1		94			
Forward Transconductance ^b	9 _{fs}	V _{DS} = 15 V, I _D = 6.7 A	Ch-2		10		S	
Dynamic ^a			•				,	
Input Capacitance	C _{iss}		Ch-1		2458		pF	
при Сараспансе		Channel-1 $V_{DS} = 15 \text{ V}, V_{GS} = 0 \text{ V}, f = 1 \text{ MHz}$	Ch-2		760			
Output Capacitance		VDS - 13 V, VGS - 0 V, I - 1 WI12	Ch-1		385			
and the second s	C _{rss}	Channel-2	Ch-2		110			
Reverse Transfer Capacitance		$V_{DS} = 15 \text{ V}, V_{GS} = 0 \text{ V}, f = 1 \text{ MHz}$	Ch-1		150			
		V _{DS} = 15 V, V _{GS} = 10 V, I _D = 9.6 A	Ch-2		50	60		
	-		Ch-1		40	60		
Total Gate Charge	Qg	$V_{DS} = 15 \text{ V}, V_{GS} = 10 \text{ V}, I_D = 6.7 \text{ A}$	Ch-2		13.2	20	nC	
		Channel-1	Ch-1 Ch-2		19 6	29 12		
Gate-Source Charge	Q _{gs}	$V_{DS} = 15 \text{ V}, V_{GS} = 4.5 \text{ V}, I_D = 9.6 \text{ A}$	Ch-1		8	12		
		01 10	Ch-2		2.1			
	Q _{gd}	Channel-2 $V_{DS} = 15 \text{ V}, V_{GS} = 4.5 \text{ V}, I_{D} = 6.7 \text{ A}$	Ch-1		6			
Gate-Drain Charge		ν _{DS} = 10 ν, ν _{GS} = 4.0 ν, η = 0.7 Α	Ch-2		1.4			
Gata Pacietanaa	B	f = 1 MHz	Ch-1	0.26	1.3	2.6	0	
Gate Resistance	R_g	I = I IVIDZ	Ch-2	0.62	3.1	6.2	Ω	

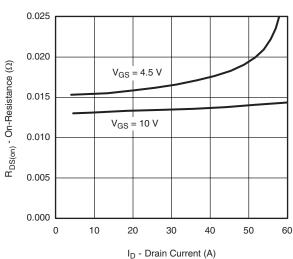
Parameter	Symbol	Symbol Test Conditions			Тур.	Max.	Unit	
Dynamic ^a	1							
Turn-On Delay Time	t _{d(on)}	Observation	Ch-1		14	21		
Tam on Boldy Time	'd(on)	Channel-1 $V_{DD} = 15 \text{ V, R}_{L} = 2 \Omega$	Ch-2		8	16	- - -	
Rise Time	t _r	$I_{D} \cong 7.7 \text{ A, V}_{GEN} = 10 \text{ V, R}_{g} = 1 \Omega$	Ch-1		8	16		
	'		Ch-2		10	20		
Turn-Off Delay Time	t _{d(off)}	Channel-2	Ch-1		25	38		
•	-(/	$V_{DD} = 15 \text{ V}, R_L = 2.8 \Omega$	Ch-2		17	26		
Fall Time	t _f	$I_D \cong 5.3 \text{ A}, V_{GEN} = 10 \text{ V}, R_g = 1 \Omega$	Ch-1		9	18	ns	
			Ch-2 Ch-1		8 27	15 35		
Turn-On Delay Time	t _{d(on)}	Channel-1	Ch-2		14	21		
		V_{DD} = 15 V, R_L = 2 Ω	Ch-1		15	23		
Rise Time	t _r	$I_D \cong 7.7 \text{ A}, V_{GEN} = 4.5 \text{ V}, R_g = 1 \Omega$	Ch-2		12	18		
		-	Ch-1		29	44		
Turn-Off Delay Time	t _{d(off)}	Channel-2 $V_{DD} = 15 \text{ V}, R_{I} = 2.8 \Omega$	Ch-2		21	32		
	t _f	$I_{D} \cong 5.3 \text{ A, } V_{GEN} = 4.5 \text{ V, } R_{g} = 1 \Omega$	Ch-1		11	17		
Fall Time		1D = 0.0 74, * GEN = 1.0 *, * 1.g = 1.22	Ch-2		11	17		
Drain-Source Body Diode Characteristi	cs		L	L		·		
Continuous Source-Drain Diode Current	I _S	T _C = 25 °C	Ch-1			2.8	A	
Continuous Source-Drain Diode Current		10-23 0	Ch-2			2.6		
Pulse Diode Forward Current ^a	I _{SM}		Ch-1			60		
Fulse Diode Folward Current			Ch-2			30		
Body Diode Voltage	V _{SD}	I _S = 2 A	Ch-1		0.57	0.68	V	
Body Blode Voltage		I _S = 5.3 A	Ch-2		0.8	1.2		
Body Diode Reverse Recovery Time	t _{rr}		Ch-1		26	39	ns	
Body Blode neverse necovery Time	۲rr		Ch-2		17	26	115	
Body Diode Reverse Recovery Charge	Q _{rr}	Channel-1 $I_F = 7.7 \text{ A}$, $dI/dt = 100 \text{ A/}\mu\text{s}$, $T_A = 25 ^{\circ}\text{C}$	Ch-1		15	23	nC	
			Ch-2		8	16		
Reverse Recovery Fall Time	t _a	Channel-2	Ch-1		13		4	
		$I_F = 5.3 \text{ A}, \text{ dI/dt} = 100 \text{ A/}\mu\text{s}, T_J = 25 \text{ °C}$	Ch-2		10		ns	
Reverse Recovery Rise Time	t _b		Ch-1		13			
•			Ch-2		7			

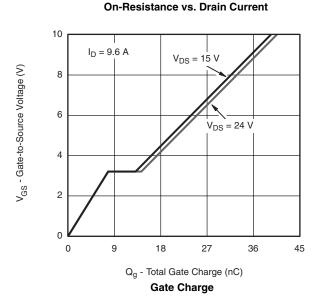
Notes

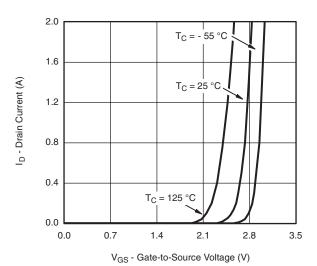
Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

a. Guaranteed by design, not subject to production testing.

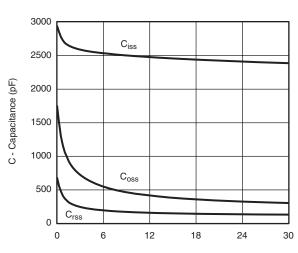

b. Pulse test; pulse width \leq 300 μ s, duty cycle \leq 2 %.

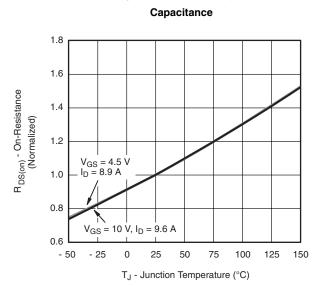

Si4622DY


Vishay Siliconix

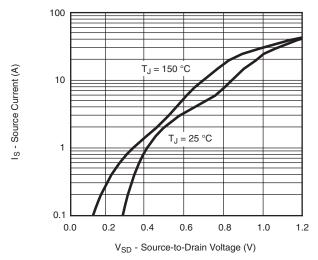

VISHAY.

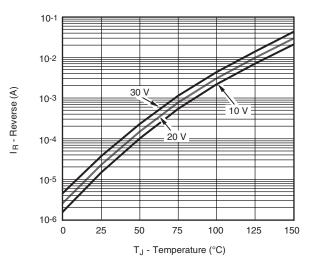
CHANNEL-1 TYPICAL CHARACTERISTICS 25 °C, unless otherwise noted

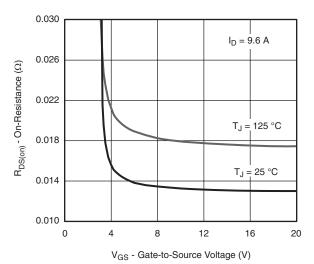


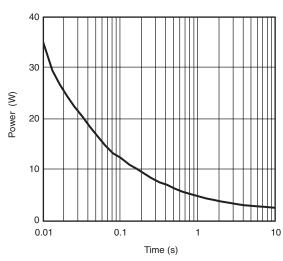


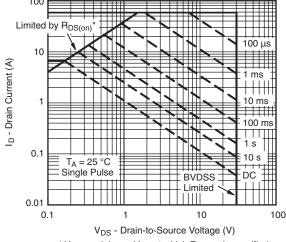
Transfer Characteristics


V_{DS} - Drain-to-Source Voltage (V)


On-Resistance vs. Junction Temperature

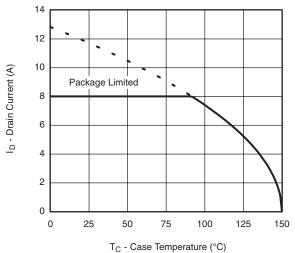

CHANNEL-1 TYPICAL CHARACTERISTICS 25 °C, unless otherwise noted


Source-Drain Diode Forward Voltage


Reverse Current (Schottky)

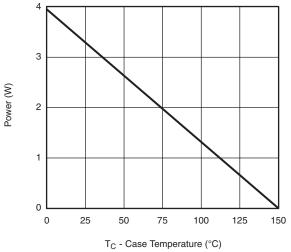
On-Resistance vs. Gate-to-Source Voltage

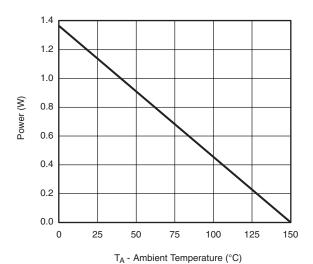
Single Pulse Power, Junction-to-Ambient



* V_{GS} > minimum V_{GS} at which R_{DS(on)} is specified

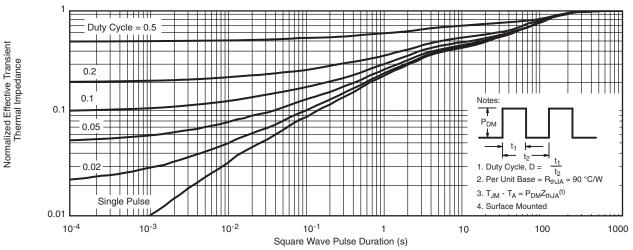
Safe Operating Area, Junction-to-Ambient


VISHAY.

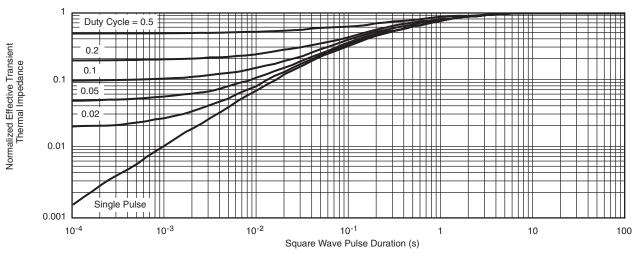

CHANNEL-1 TYPICAL CHARACTERISTICS 25 °C, unless otherwise noted

C case remperature (

Current Derating*

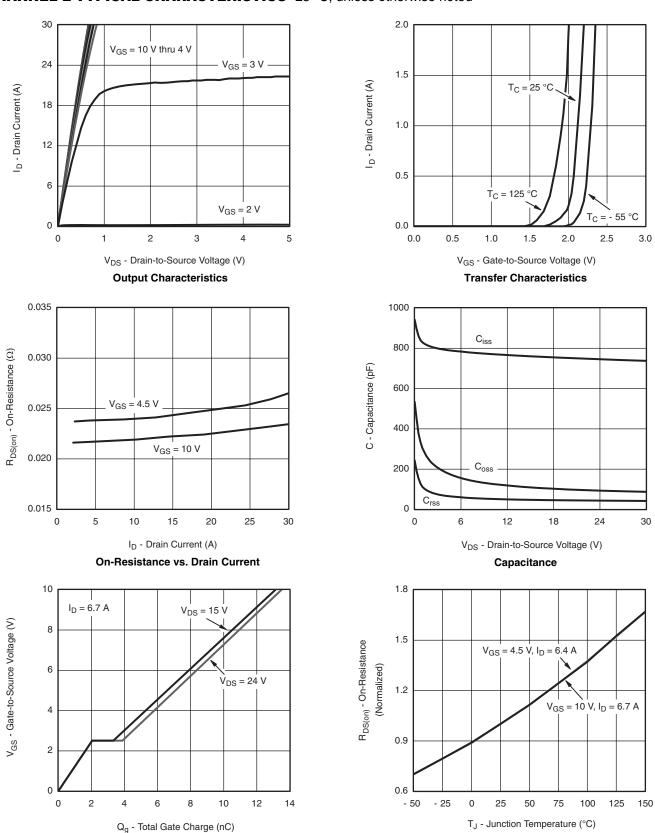

Power Derating, Junction-to-Foot

Power Derating, Junction-to-Ambient


^{*} The power dissipation P_D is based on $T_{J(max)} = 150$ °C, using junction-to-case thermal resistance, and is more useful in settling the upper dissipation limit for cases where additional heatsinking is used. It is used to determine the current rating, when this rating falls below the package limit.

CHANNEL-1 TYPICAL CHARACTERISTICS 25 °C, unless otherwise noted

Normalized Thermal Transient Impedance, Junction-to-Ambient

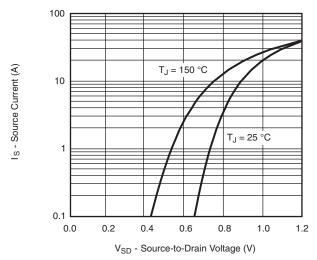

Normalized Thermal Transient Impedance, Junction-to-Foot

Si4622DY

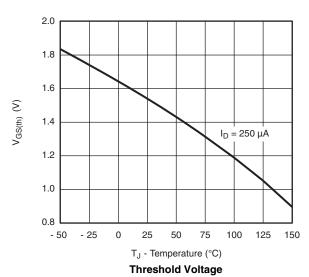
Vishay Siliconix

VISHAY.

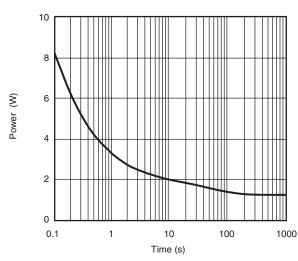
CHANNEL-2 TYPICAL CHARACTERISTICS 25 °C, unless otherwise noted



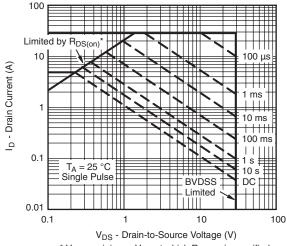
Gate Charge


On-Resistance vs. Junction Temperature

CHANNEL-2 TYPICAL CHARACTERISTICS 25 °C, unless otherwise noted

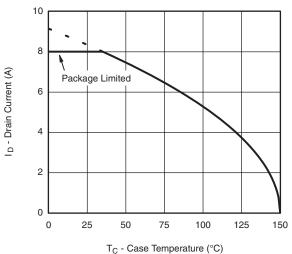


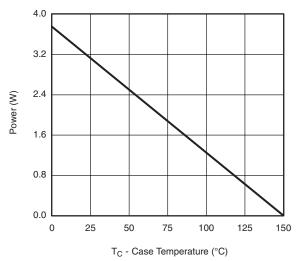
Source-Drain Diode Forward Voltage



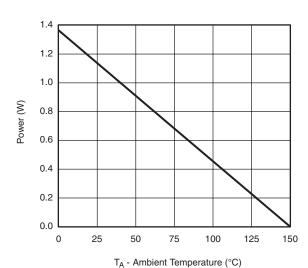
 $I_D = 8.6 \text{ A}$ $I_D = 8.6$

 $\label{eq:VGS} V_{GS} \mbox{ - Gate-to-Source Voltage (V)} \\$ On-Resistance vs. Gate-to-Source Voltage

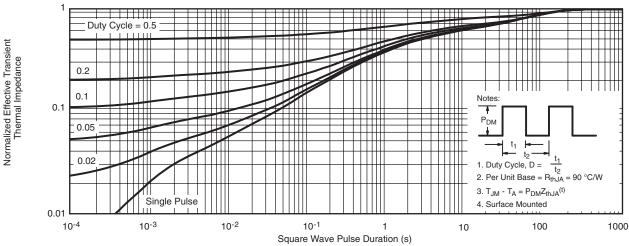

Single Pulse Power, Junction-to-Ambient


* V_{GS} > minimum V_{GS} at which R_{DS(on)} is specified

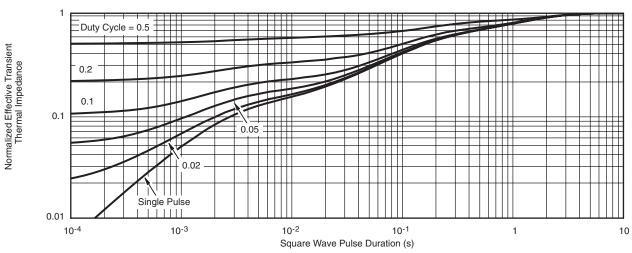
Safe Operating Area, Junction-to-Ambient


CHANNEL-2 TYPICAL CHARACTERISTICS 25 °C, unless otherwise noted

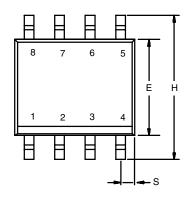
Current Derating*

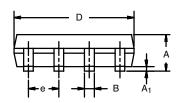


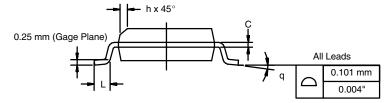
Power Derating, Junction-to-Ambient


^{*} The power dissipation P_D is based on $T_{J(max)} = 150$ °C, using junction-to-case thermal resistance, and is more useful in settling the upper dissipation limit for cases where additional heatsinking is used. It is used to determine the current rating, when this rating falls below the package limit.

CHANNEL-2 TYPICAL CHARACTERISTICS 25 °C, unless otherwise noted

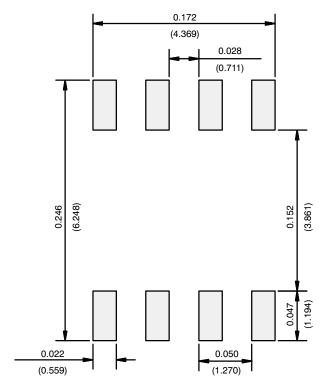

Normalized Thermal Transient Impedance, Junction-to-Ambient




Normalized Thermal Transient Impedance, Junction-to-Foot

Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and reliability data, see www.vishay.com/ppg268695.

SOIC (NARROW): 8-LEAD JEDEC Part Number: MS-012


	MILLIM	IETERS	INCHES				
DIM	Min	Max	Min	Max			
Α	1.35	1.75	0.053	0.069			
A ₁	0.10	0.20	0.004	0.008			
В	0.35	0.51	0.014	0.020			
С	0.19	0.25	0.0075	0.010			
D	4.80	5.00	0.189	0.196			
Е	3.80	4.00	0.150	0.157			
е	1.27	BSC	0.050 BSC				
Н	5.80	6.20	0.228	0.244			
h	0.25	0.50	0.010	0.020			
L	0.50	0.93	0.020	0.037			
q	0°	8°	0°	8°			
S	0.44	0.64	0.018	0.026			
ECN: C-06527-Rev. I. 11-Sep-06							

DWG: 5498

Document Number: 71192 www.vishay.com 11-Sep-06

RECOMMENDED MINIMUM PADS FOR SO-8

Recommended Minimum Pads Dimensions in Inches/(mm)

Return to Index

APPLICATION NOT

Ш

Legal Disclaimer Notice

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Hyperlinks included in this datasheet may direct users to third-party websites. These links are provided as a convenience and for informational purposes only. Inclusion of these hyperlinks does not constitute an endorsement or an approval by Vishay of any of the products, services or opinions of the corporation, organization or individual associated with the third-party website. Vishay disclaims any and all liability and bears no responsibility for the accuracy, legality or content of the third-party website or for that of subsequent links.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.