CMOS Analog Switches

(Obsolete for non-hermetic. See DG381B Series for pin-for-pin replacements.)

FEATURES

- $\pm 15-\mathrm{V}$ Input Range
- Low r ${ }_{\text {DS(on) }}: 30 \Omega$
- Single Supply Operation
- Pin and Function Compatible with the JFET DG180 Family

BENEFITS

- Full Rail-to-Rail Analog Signal Range
- Minimizes Signal Error
- Low Power Dissipation

APPLICATIONS

- Low Level Switching Circuits
- Programmable Gain Amplifiers
- Portable and Battery Powered Sytems

DESCRIPTION

The DG384A_MIL and DG387A_MIL monolithic CMOS analog switches were designed for applications in instrumentation, communications, and process control. This series is suited for applications requiring fast switching and nearly flat on-resistance over the entire voltage range.

Designed on Vishay Siliconix' PLUS-40 CMOS process, these devices achieve low power consumption $(3.5 \mathrm{~mW}$ typical) and excellent on/off switch performance. These
switches are ideal for battery powered applications, without sacrificing switching speed. Break-before-make switching action is guaranteed, and an epitaxial layer prevents latchup. Single supply operation is allowed by connecting the V - rail to 0 V .

Each switch conducts equally well in both directions when on, and blocks up to the supply voltage when off. These switches are CMOS and quasi TTL logic compatible.

FUNCTIONAL BLOCK DIAGRAM AND PIN CONFIGURATION

TRUTH TABLE		
Logic	$\mathbf{S W}_{\mathbf{1}}$	$\mathbf{S W}_{\mathbf{2}}$
0	ON	OFF
1	OFF	ON

Logic " 0 " $\leq 0.8 \mathrm{~V}$
Logic " 1 " $\geq 4 \mathrm{~V}$

ORDERING INFORMATION		
Temp Range	Package	Part Number
DG384A_MIL		
-55 to $125^{\circ} \mathrm{C}$	16-Pin CerDIP	DGG384AAKK883 $5962-9678801 \mathrm{QEA}$
DG387A_MIL		
-55 to $125^{\circ} \mathrm{C}$		
	14-Pin CerDIP	DG3877AKK883

ABSOLUTE MAXIMUM RATINGS

Voltages Referenced to V -	
V+	44 V
GND	25 V
Digital Inputs ${ }^{\text {a }}$, $\mathrm{V}_{\mathrm{S}}, \mathrm{V}_{\mathrm{D}}$	\ldots. (V-) -2 V to ($\mathrm{V}+$) +2 V or 30 mA , whichever occurs first
Current, Any Terminal Except S or D	30 mA
Continuous Current, S or D	30 mA
(Pulsed at $1 \mathrm{~ms}, 10 \%$ duty cycle max)	100 mA
Storage Temperature	. -65 to $150^{\circ} \mathrm{C}$

Power Dissipation ${ }^{\text {b }}$
14-Pin CerDIPc
825 mW
10-Pin Metal Cand
450 mW

Notes:
a. Signals on S_{x}, D_{x}, or I_{x} exceeding $V+$ or V - will be clamped by internal diodes. Limit forward diode current to maximum current ratings.
b. All leads welded or soldered to PC Board.
c. Derate $11 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $75^{\circ} \mathrm{C}$
d. Derate $6 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $75^{\circ} \mathrm{C}$

SCHEMATIC DIAGRAM (TYPICAL CHANNEL)

FIGURE 1.

Vishay Siliconix

SPECIFICATIONS ${ }^{\text {a }}$

Parameter	Symbol	Test Conditions Unless Specified$\begin{gathered} \mathrm{V}_{+}=15 \mathrm{~V}, \mathrm{~V}-=-15 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{IN}}=0.8 \mathrm{~V} \text { or } 4 \mathrm{~V}^{f} \end{gathered}$		Temp ${ }^{\text {b }}$	Limits			Unit	
				Min ${ }^{\text {c }}$	Typ ${ }^{\text {d }}$	Max ${ }^{\text {c }}$			
Analog Switch									
Analog Signal Range ${ }^{\text {e }}$	$\mathrm{V}_{\text {ANALOG }}$				Full	-15		15	V
Drain-Source On-Resistance	${ }^{\text {r DS }}$ (on)	$V_{D}= \pm 10$		Room Full		30	$\begin{aligned} & 50 \\ & 75 \end{aligned}$	Ω	
Source Off Leakage Current	$\mathrm{I}_{\text {(off) }}$	$\mathrm{V}_{S}= \pm 14$		Room Hot	$\begin{gathered} \hline-1 \\ -100 \end{gathered}$	± 0.1	$\begin{gathered} \hline 1 \\ 100 \end{gathered}$		
Drain Off Leakage Current	$\mathrm{I}_{\mathrm{D} \text { (off) }}$	$V_{S}= \pm 14$		Room Hot	$\begin{gathered} \hline-1 \\ -100 \end{gathered}$	± 0.1	$\begin{gathered} 1 \\ 100 \end{gathered}$	nA	
Drain On Leakage Current	$\mathrm{I}_{\mathrm{D} \text { (on) }}$	$V_{D}=V^{\prime}$		Room Hot	$\begin{gathered} \hline-11 \\ -100 \end{gathered}$	± 0.1	$\begin{gathered} 1 \\ 100 \end{gathered}$		
Digital Control									
Input Current with Input Voltage High	$\mathrm{I}_{\text {INH }}$	$\mathrm{V}_{\mathrm{IN}}=5 \mathrm{~V}$		Room Full	$\begin{aligned} & \hline-1 \\ & -1 \end{aligned}$	-0.001			
		$\mathrm{V}_{\text {IN }}=15 \mathrm{~V}$		Room Full		0.001	1 1	$\mu \mathrm{A}$	
Input Current with Input Voltage Low	$\mathrm{I}_{\text {INL }}$	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$		Room Full	$\begin{aligned} & \hline-1 \\ & -1 \end{aligned}$	-0.001			
Dynamic Characteristics									
Turn-On Time	ton	See Figure 2		Room		150	300	ns	
Turn-Off Time	toff			Room		130	250		
Break-Before-Make Time	topen	See Figure 3		Room		50			
Charge Injection	Q	$\mathrm{C}_{\mathrm{L}}=0.01 \mu \mathrm{~F}, \mathrm{R}_{\text {gen }}=0 \Omega \mathrm{~V}_{\text {gen }}=0 \mathrm{~V}$		Room		10		pC	
Source-Off Capacitance	$\mathrm{C}_{\text {S(off) }}$	$\mathrm{f}=1 \mathrm{MHz} ; \mathrm{V}_{\mathrm{S}}, \mathrm{V}_{\mathrm{D}}=0 \mathrm{~V}$		Room		14		pF	
Drain-Off Capacitance	$\mathrm{C}_{\text {(off) }}$			Room		14			
Channel-On Capacitance	$\mathrm{C}_{\mathrm{D} \text { (on) }}$			Room		40			
Input Capacitance	$\mathrm{C}_{\text {IN }}$	$\mathrm{f}=1 \mathrm{MHz}$	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$	Room		6			
			$\mathrm{V}_{\mathrm{IN}}=15 \mathrm{~V}$	Room		7			
Off-Isolation	OIRR	$\begin{gathered} V_{I N}=0 \mathrm{~V}, R_{\mathrm{L}}=1 \mathrm{k} \Omega \\ \mathrm{~V}_{\mathrm{S}}=1 \mathrm{~V}_{\mathrm{rms}}, \mathrm{f}=500 \mathrm{kHz} \end{gathered}$		Room		62		dB	
Crosstalk (Channel-to-Channel)	$\mathrm{X}_{\text {TALK }}$			Room		74			
Power Supplies									
Positive Supply Current	$1+$	$\mathrm{V}_{\mathrm{IN}}=4 \mathrm{~V}$ (One Input) (All Others = 0)		Room Full		0.23	$\begin{aligned} & 0.5 \\ & 1.0 \end{aligned}$	mA	
Negative Supply Current	$1-$			Room Full	$\begin{gathered} \hline-10 \\ -100 \end{gathered}$	-0.001		$\mu \mathrm{A}$	
Positive Supply Current	$1+$	$\mathrm{V}_{\mathrm{IN}}=0.8 \mathrm{~V}$ (All Inputs)		Room Full		0.001	$\begin{gathered} \hline 10 \\ 100 \end{gathered}$		
Negative Supply Current	I-			Room Full	$\begin{gathered} \hline-10 \\ -100 \end{gathered}$	-0.001			

Notes:

a. Refer to PROCESS OPTION FLOWCHART.
b. Room $=25^{\circ} \mathrm{C}$, Full $=$ as determined by the operating temperature suffix.
c. The algebraic convention whereby the most negative value is a minimum and the most positive a maximum, is used in this data sheet.
d. Typical values are for DESIGN AID ONLY, not guaranteed nor subject to production testing.
e. Guaranteed by design, not subject to production test.
f. $\quad \mathrm{V}_{\mathrm{IN}}=$ input voltage to perform proper function.

TYPICAL CHARACTERISTICS ($25^{\circ} \mathrm{C}$ UNLESS NOTED)

Input Switching Threshold

Switching Time and Break-Before-Make Time vs. Positive Supply Voltage

Vishay Siliconix

TYPICAL CHARACTERISTICS ($25^{\circ} \mathrm{C}$ UNLESS NOTED)

TEST CIRCUITS

FIGURE 2. Switching Time

C_{L} (includes fixture and stray capacitance)

FIGURE 3. Break-Before-Make SPDT
(DG387A_MIL)

FIGURE 4. Charge Injection

APPLICATIONS

The DG384A_MIL and DG387A_MIL will switch positive analog signals while using a single positive supply. This allows their use in applications where only one supply is available. The trade-offs or performance given up while using single supplies are: 1) increased $\mathrm{r}_{\mathrm{DS}(o n)}$, 2) slower switching speed. Typical curves for aid in designing with single supplies are supplied (see Typical Characteristics). The analog voltage should not go above or below the supply voltages which in single operation are $\mathrm{V}+$ and 0 V .

In the integrator of Figure $4, R_{D}$ controls the discharge rate of the capacitor so that the pulsed or continuous current ratings are not exceeded. During reset SW_{1} is closed and SW_{2} is open. Opening SW_{2} with SW_{1} also open will hold the integrator output at its present value.

FIGURE 5. Integrator with Reset and Start/Stop

Disclaimer

All product specifications and data are subject to change without notice.
Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained herein or in any other disclosure relating to any product.

Vishay disclaims any and all liability arising out of the use or application of any product described herein or of any information provided herein to the maximum extent permitted by law. The product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein, which apply to these products.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications unless otherwise expressly indicated. Customers using or selling Vishay products not expressly indicated for use in such applications do so entirely at their own risk and agree to fully indemnify Vishay for any damages arising or resulting from such use or sale. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

Product names and markings noted herein may be trademarks of their respective owners.

