

I<sup>2</sup>PAK (TO-262)

V<sub>DS</sub> (V)

R<sub>DS(on)</sub> (Ω)

Q<sub>qs</sub> (nC)

Q<sub>gd</sub> (nC)

 $Q_g$  max. (n $\overline{C}$ )

Configuration

S<sub>D</sub>s

**PRODUCT SUMMARY** 

D<sup>2</sup>PAK (TO-2)

# IRFBE30S, SiHFBE30S, IRFBE30L, SiHFBE30L

**Vishay Siliconix** 

# **Power MOSFET**

### **FEATURES**

- Dynamic dV/dt rating
- · Repetitive avalanche rated
- Fast switching
- · Ease of paralleling
- Simple drive requirements
- · Material categorization: for definitions of compliance please see www.vishay.com/doc?99912

#### Note

N-Channel MOSFET

3.0

800

78

9.6

45

Single

V<sub>GS</sub> = 10 V

This datasheet provides information about parts that are RoHS-compliant and / or parts that are non RoHS-compliant. For example, parts with lead (Pb) terminations are not RoHS-compliant. Please see the information / tables in this datasheet for details

### DESCRIPTION

Third generation power MOSFETs from Vishay provide the designer with the best combination of fast switching, ruggedized device design, low on-resistance and cost-effectiveness.

| ORDERING INFORMATION            |                             |                             |                             |  |  |  |
|---------------------------------|-----------------------------|-----------------------------|-----------------------------|--|--|--|
| Package                         | D <sup>2</sup> PAK (TO-263) | D <sup>2</sup> PAK (TO-263) | I <sup>2</sup> PAK (TO-262) |  |  |  |
| Lead (Pb)-free and Halogen-free | SiHFBE30S-GE3               | SiHFBE30STRL-GE3 a          | SiHFBE30L-GE3               |  |  |  |
| Lead (Pb)-free                  | IRFBE30SPbF                 | IRFBE30STRLPbF <sup>a</sup> | IRFBE30LPbF                 |  |  |  |

### Note

a. See device orientation

| PARAMETER                                                          |                                   | SYMBOL                  | LIMIT           | UNIT |          |  |
|--------------------------------------------------------------------|-----------------------------------|-------------------------|-----------------|------|----------|--|
| Drain-Source Voltage                                               | V <sub>DS</sub>                   | 800                     | N               |      |          |  |
| Gate-Source Voltage                                                | V <sub>GS</sub>                   | ± 20                    | - V             |      |          |  |
| Continuous Drain Current                                           | V <sub>GS</sub> at 10 V           | T <sub>C</sub> = 25 °C  | 1-              | 4.1  |          |  |
| Continuous Drain Current                                           | V <sub>GS</sub> at 10 V           | T <sub>C</sub> = 100 °C | ID              | 2.6  | А        |  |
| Pulsed Drain Current <sup>a</sup>                                  | I <sub>DM</sub>                   | 16                      |                 |      |          |  |
| Linear Derating Factor                                             |                                   | 1.0                     | W/°C            |      |          |  |
| Single Pulse Avalanche Energy <sup>b</sup>                         | E <sub>AS</sub>                   | 260                     | mJ              |      |          |  |
| Avalanche Current <sup>a</sup>                                     |                                   |                         | I <sub>AR</sub> | 4.1  | А        |  |
| Repetitive Avalanche Energy <sup>a</sup>                           |                                   |                         | E <sub>AR</sub> | 13   | mJ       |  |
| Maximum Power Dissipation                                          | T <sub>C</sub> =                  | 25 °C                   | PD              | 125  | W        |  |
| Peak Diode Recovery dV/dt <sup>c</sup>                             |                                   |                         | dV/dt           | 2.0  | V/ns     |  |
| Operating Junction and Storage Temperature Range                   | T <sub>J</sub> , T <sub>stg</sub> | -55 to +150             | °C              |      |          |  |
| Soldering Recommendations (Peak temperature) <sup>d</sup> for 10 s |                                   |                         | -               | 300  | -0       |  |
| Mounting Torque                                                    | 6-32 or M3 screw                  |                         |                 | 10   | lbf · in |  |
| Mounting Torque                                                    |                                   |                         |                 | 1.1  | N · m    |  |

#### Notes

a. Repetitive rating; pulse width limited by maximum junction temperature (see fig. 11)

b.  $V_{DD}$  = 50 V, starting T<sub>J</sub> = 25 °C, L = 29 mH, R<sub>g</sub> = 25  $\Omega$ , I<sub>AS</sub> = 4.1 A (see fig. 12)

c.  $I_{SD} \le 4.1$  A, dI/dt  $\le 100$  A/µs,  $V_{DD} \le 600$  V,  $T_J \le 150$  °C

d. 1.6 mm from case

S21-0943-Rev. D, 20-Sep-2021

For technical questions, contact: hvm@vishay.com THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT

ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishav.com/doc?91000





www.vishay.com

Vishay Siliconix

| THERMAL RESISTANCE RATINGS          |                   |      |      |      |      |  |  |
|-------------------------------------|-------------------|------|------|------|------|--|--|
| PARAMETER                           | SYMBOL            | MIN. | TYP. | MAX. | UNIT |  |  |
| Maximum Junction-to-Ambient         | R <sub>thJA</sub> | -    | -    | 62   |      |  |  |
| Case-to-Sink, Flat, Greased Surface | R <sub>thCS</sub> | -    | 0.50 | -    | °C/W |  |  |
| Maximum Junction-to-Case (Drain)    | R <sub>thJC</sub> | -    | -    | 1.0  |      |  |  |

#### Note

a. When mounted on 1" square PCB (FR-4 or G-10 material)

| PARAMETER                                 | SYMBOL                 | TEST CONDITIONS                                          |                                                                                  | MIN.       | TYP.      | MAX.     | UNIT             |
|-------------------------------------------|------------------------|----------------------------------------------------------|----------------------------------------------------------------------------------|------------|-----------|----------|------------------|
| Static                                    |                        |                                                          |                                                                                  |            |           |          |                  |
| Drain-Source Breakdown Voltage            | V <sub>DS</sub>        | V <sub>GS</sub> :                                        | = 0 V, I <sub>D</sub> = 250 μA                                                   | 800        | -         | -        | V                |
| V <sub>DS</sub> Temperature Coefficient   | $\Delta V_{DS}/T_{J}$  | Reference                                                | e to 25 °C, I <sub>D</sub> = 1 mA                                                | -          | 0.90      | -        | V/°C             |
| Gate-Source Threshold Voltage             | V <sub>GS(th)</sub>    | V <sub>DS</sub> =                                        | - V <sub>GS</sub> , I <sub>D</sub> = 250 μΑ                                      | 2.0        | -         | 4.0      | V                |
| Gate-Source Leakage                       | I <sub>GSS</sub>       |                                                          | $V_{GS} = \pm 20 V$                                                              | -          | -         | ± 100    | nA               |
| Zene Oete Vielte en Duein Ourment         |                        | V <sub>DS</sub> =                                        | = 800 V, V <sub>GS</sub> = 0 V                                                   | -          | -         | 100      | <u> </u>         |
| Zero Gate Voltage Drain Current           | IDSS                   | V <sub>DS</sub> = 640 V                                  | ′, V <sub>GS</sub> = 0 V, T <sub>J</sub> = 125 °C                                | -          | -         | 500      | μA               |
| Drain-Source On-State Resistance          | R <sub>DS(on)</sub>    | $V_{GS} = 10 V$                                          | I <sub>D</sub> = 2.5 A <sup>b</sup>                                              | -          | -         | 3.0      | Ω                |
| Forward Transconductance                  | <b>g</b> <sub>fs</sub> | V <sub>DS</sub> =                                        | 100 V, I <sub>D</sub> = 2.5 A                                                    | 2.5        | -         | -        | S                |
| Dynamic                                   |                        | •                                                        |                                                                                  | •          | •         | •        |                  |
| Input Capacitance                         | C <sub>iss</sub>       |                                                          | $V_{GS} = 0 V$ ,                                                                 | -          | 1300      | -        |                  |
| Output Capacitance                        | C <sub>oss</sub>       |                                                          | $V_{DS} = 25 V,$                                                                 | -          | 310       | -        | pF               |
| Reverse Transfer Capacitance              | C <sub>rss</sub>       | f = 1                                                    | .0 MHz, see fig. 5                                                               | -          | 190       | -        |                  |
| Total Gate Charge                         | Qg                     |                                                          |                                                                                  | -          | -         | 78       |                  |
| Gate-Source Charge                        | $Q_gs$                 | V <sub>GS</sub> = 10 V                                   | $I_D = 4.1 \text{ A}, V_{DS} = 400 \text{ V},$<br>see fig. 6 and 13 <sup>b</sup> | -          | -         | 9.6      | nC               |
| Gate-Drain Charge                         | Q <sub>gd</sub>        |                                                          | see lig. o and to                                                                | -          | -         | 45       |                  |
| Turn-On Delay Time                        | t <sub>d(on)</sub>     |                                                          |                                                                                  | -          | 12        | -        |                  |
| Rise Time                                 | t <sub>r</sub>         | $V_{DD} = 400 \text{ V}, \text{ I}_{D} = 4.1 \text{ A},$ |                                                                                  | -          | 33        | -        | ]                |
| Turn-Off Delay Time                       | t <sub>d(off)</sub>    | $R_g = 12 \Omega$ ,                                      | $R_D = 95 \Omega$ , see fig. 10 <sup>b</sup>                                     | -          | 82        | -        | - ns             |
| Fall Time                                 | t <sub>f</sub>         |                                                          |                                                                                  | -          | 30        | -        |                  |
| Gate Input Resistance                     | Rg                     | f = 1                                                    | MHz, open drain                                                                  | 0.6        | -         | 1.6      | Ω                |
| Internal Drain Inductance                 | L <sub>D</sub>         | Between lead<br>6 mm (0.25")                             | rom                                                                              | -          | 4.5       | -        | 24               |
| Internal Source Inductance                | L <sub>S</sub>         | package and die contact                                  | center of                                                                        | -          | 7.5       | -        | nH               |
| Drain-Source Body Diode Characteristic    | s                      | -                                                        |                                                                                  |            |           |          |                  |
| Continuous Source-Drain Diode Current     | I <sub>S</sub>         | MOSFET s<br>showing                                      |                                                                                  | -          | -         | 4.1      | _                |
| Pulsed Diode Forward Current <sup>a</sup> | I <sub>SM</sub>        | 0                                                        | integral reverse<br>p - n junction diode                                         |            | -         | 16       | A                |
| Body Diode Voltage                        | V <sub>SD</sub>        | T <sub>J</sub> = 25 °C                                   | , I <sub>S</sub> = 4.1 A, V <sub>GS</sub> = 0 V <sup>b</sup>                     | -          | -         | 1.8      | V                |
| Body Diode Reverse Recovery Time          | t <sub>rr</sub>        | T 05 00 1                                                | 44 A                                                                             | -          | 480       | 720      | ns               |
| Body Diode Reverse Recovery Charge        | Q <sub>rr</sub>        | $I_{\rm J} = 25 ^{\circ}{\rm C}, I_{\rm F}$              | = 4.1 A, dl/dt = 100 A/µs <sup>b</sup>                                           | -          | 1.8       | 2.7      | nC               |
| Forward Turn-On Time                      | t <sub>on</sub>        | Intrinsic tu                                             | rn-on time is negligible (turn                                                   | -on is dor | ninated b | v Ls and | L <sub>D</sub> ) |

### Notes

a. Repetitive rating; pulse width limited by maximum junction temperature (see fig. 11)

b. Pulse width  $\leq$  300 µs; duty cycle  $\leq$  2 %

2



**Vishay Siliconix** 

## TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)

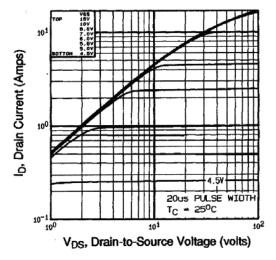



Fig. 1 - Typical Output Characteristics, T<sub>C</sub> = 25 °C

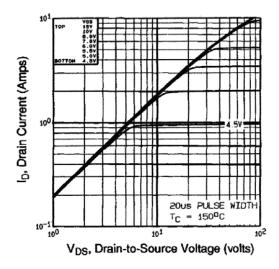



Fig. 2 - Typical Output Characteristics,  $T_C = 150 \ ^\circ C$ 

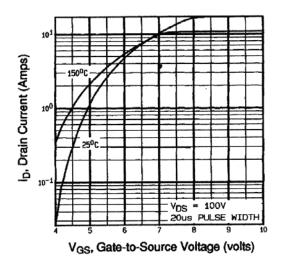



Fig. 3 - Typical Transfer Characteristics

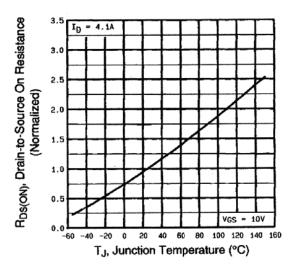



Fig. 4 - Normalized On-Resistance vs. Temperature

**3** For technical questions, contact: <u>hvm@vishay.com</u>

THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT <u>www.vishay.com/doc?91000</u>



**Vishay Siliconix** 

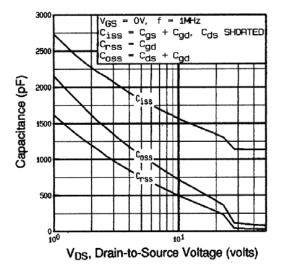



Fig. 5 - Typical Capacitance vs. Drain-to-Source Voltage

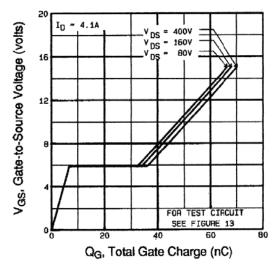



Fig. 6 - Typical Gate Charge vs. Gate-to-Source Voltage

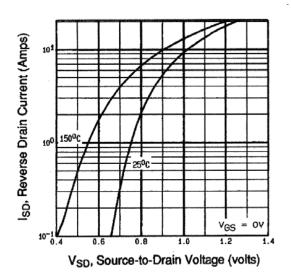
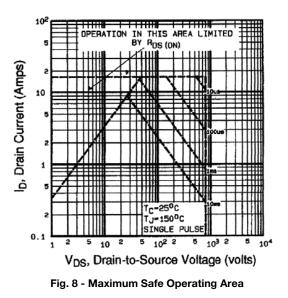




Fig. 7 - Typical Source-Drain Diode Forward Voltage



4



www.vishay.com

**Vishay Siliconix** 

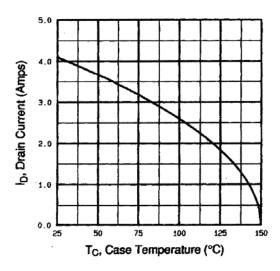



Fig. 9 - Maximum Drain Current vs. Case Temperature

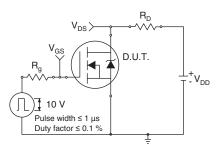



Fig. 10a - Switching Time Test Circuit

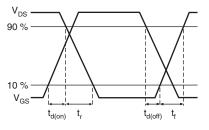
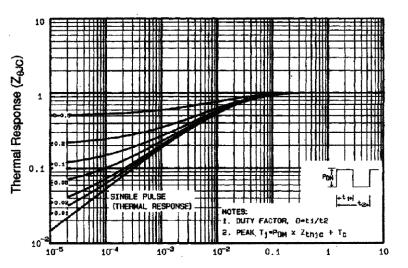





Fig. 10b - Switching Time Waveforms





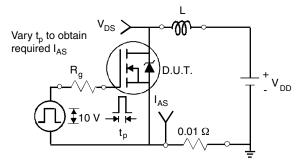



Fig. 12a - Unclamped Inductive Test Circuit

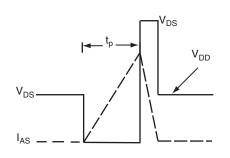
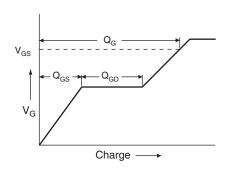



Fig. 12b - Unclamped Inductive Waveforms

S21-0943-Rev. D, 20-Sep-2021

5 For technical questions, contact: <u>hvm@vishay.com</u> Document Number: 91119


THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT <a href="http://www.vishay.com/doc?91000">www.vishay.com/doc?91000</a>



## Vishay Siliconix



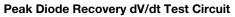
Fig. 12c - Maximum Avalanche Energy vs. Drain Current

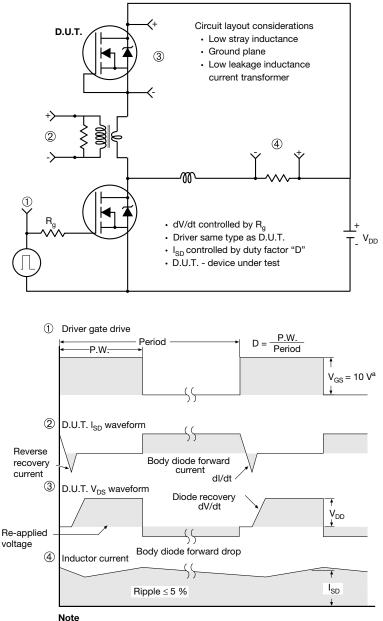


Same type as D.U.T. Same type as D.U.T. U Same type as D.U.T. Same t

Current regulator

Fig. 13a - Maximum Avalanche Energy vs. Drain Current


Fig. 13b - Gate Charge Test Circuit


For technical questions, contact: <u>hvm@vishay.com</u> THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT <u>www.vishay.com/doc?91000</u>



## www.vishay.com

## **Vishay Siliconix**





a.  $V_{GS} = 5$  V for logic level devices

Fig. 14 - For N-Channel

Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and reliability data, see <a href="http://www.vishay.com/ppg?91119">www.vishay.com/ppg?91119</a>.

For technical questions, contact: <u>hvm@vishay.com</u> THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT <u>www.vishay.com/doc?91000</u>

# Package Information

H

B

A1

Gauge plane 0° to 8° Vishay Siliconix

Seating plane

### **TO-263AB (HIGH VOLTAGE)**

∕4∖

-A

н

Detail A

/3

Ē

(Datum A)

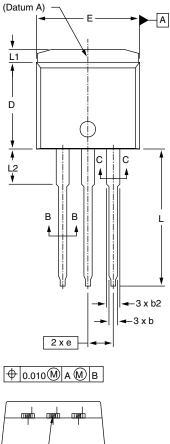
D

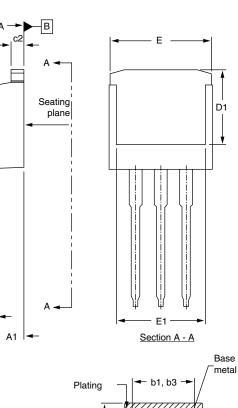
<u>4</u><u>L</u>1

| $\begin{array}{c} 1 & 2 & 3 & 4 \\ \hline 2 & 1 & 2 & 3 & 4 \\ \hline 2 & 1 & 2 & 3 & 4 \\ \hline 2 & 1 & 2 & 3 & 4 \\ \hline 2 & 1 & 2 & 3 & 4 \\ \hline 2 & 1 & 2 & 3 & 4 \\ \hline 2 & 1 & 2 & 3 & 4 \\ \hline 2 & 1 & 2 & 3 & 4 \\ \hline 2 & 1 & 2 & 3 & 4 \\ \hline 2 & 1 & 2 & 3 & 4 \\ \hline 2 & 1 & 2 & 3 & 4 \\ \hline 2 & 1 & 2 & 3 & 4 \\ \hline 2 & 1 & 2 & 3 & 4 \\ \hline 2 & 1 & 2 & 2 & 3 \\ \hline 2 & 1 & 2 & 2 & 3 \\ \hline 2 & 1 & 2 & 2 & 3 \\ \hline 2 & 1 & 2 & 2 & 3 \\ \hline 2 & 1 & 2 & 2 & 3 \\ \hline 2 & 1 & 2 & 2 & 3 \\ \hline 2 & 1 & 2 & 2 & 3 \\ \hline 2 & 1 & 2 & 2 & 3 \\ \hline 2 & 1 & 2 & 2 & 3 \\ \hline 2 & 1 & 2 & 2 & 3 \\ \hline 2 & 1 & 2 & 2 & 3 \\ \hline 2 & 1 & 2 & 2 & 3 \\ \hline 2 & 1 & 2 & 2 & 3 \\ \hline 2 & 1 & 2 & 2 & 3 \\ \hline 2 & 1 & 2 & 2 & 3 \\ \hline 2 & 1 & 2 & 2 & 3 \\ \hline 2 & 1 & 2 & 2 & 3 \\ \hline 2 & 1 & 2 & 2 & 3 \\ \hline 2 & 1 & 2 & 2 & 3 \\ \hline 2 & 1 & 2 & 2 & 3 \\ \hline 2 & 1 & 2 & 2 & 3 \\ \hline 2 & 1 & 2 & 2 & 3 \\ \hline 2 & 1 & 2 & 2 & 3 \\ \hline 2 & 1 & 2 & 2 & 3 \\ \hline 2 & 1 & 2 & 2 & 3 \\ \hline 2 & 1 & 2 & 2 & 3 \\ \hline 2 & 1 & 2 & 2 & 3 \\ \hline 2 & 1 & 2 & 2 & 3 \\ \hline 2 & 1 & 2 & 2 & 3 \\ \hline 2 & 1 & 2 & 2 & 3 \\ \hline 2 & 1 & 2 & 2 & 3 \\ \hline 2 & 1 & 2 & 2 & 3 \\ \hline 2 & 1 & 2 & 2 & 3 \\ \hline 2 & 1 & 2 & 2 & 3 \\ \hline 2 & 1 & 2 & 2 & 3 \\ \hline 2 & 1 & 2 & 2 & 3 \\ \hline 2 & 1 & 2 & 2 & 3 \\ \hline 2 & 1 & 2 & 2 & 3 \\ \hline 2 & 1 & 2 & 2 & 3 \\ \hline 2 & 1 & 2 & 2 & 3 \\ \hline 2 & 1 & 2 & 2 & 3 \\ \hline 2 & 1 & 2 & 2 & 3 \\ \hline 2 & 1 & 2 & 2 & 3 \\ \hline 2 & 1 & 2 & 2 & 3 \\ \hline 2 & 1 & 2 & 2 & 3 \\ \hline 2 & 1 & 2 & 2 & 3 \\ \hline 2 & 1 & 2 & 2 & 3 \\ \hline 2 & 1 & 2 & 2 & 3 \\ \hline 2 & 1 & 2 & 2 & 3 \\ \hline 2 & 1 & 2 & 2 & 3 \\ \hline 2 & 1 & 2 & 2 & 3 \\ \hline 2 & 1 & 2 & 2 & 3 \\ \hline 2 & 1 & 2 & 2 & 3 \\ \hline 2 & 1 & 2 & 2 & 3 \\ \hline 2 & 1 & 2 & 2 & 3 \\ \hline 2 & 1 & 2 & 2 & 3 \\ \hline 2 & 1 & 2 & 2 & 3 \\ \hline 2 & 1 & 2 & 2 & 3 \\ \hline 2 & 1 & 2 & 2 & 3 \\ \hline 2 & 1 & 2 & 2 & 3 \\ \hline 2 & 1 & 2 & 2 & 3 \\ \hline 2 & 1 & 2 & 2 & 3 \\ \hline 2 & 1 & 2 & 2 & 3 \\ \hline 2 & 1 & 2 & 2 & 3 \\ \hline 2 & 1 & 2 & 2 & 3 \\ \hline 2 & 1 & 2 & 2 & 3 \\ \hline 2 & 1 & 2 & 2 & 3 \\ \hline 2 & 1 & 2 & 2 & 3 \\ \hline 2 & 1 & 2 & 2 & 3 \\ \hline 2 & 1 & 2 & 2 & 3 \\ \hline 2 & 1 & 2 & 2 & 3 \\ \hline 2 & 1 & 2 & 2 & 3 \\ \hline 2 & 1 & 2 & 2 & 3 \\ \hline 2 & 1 & 2 & 2 & 3 \\ \hline 2 & 1 & 2 & 2 & 3 \\ \hline 2 & 1 & 2 & 2 & 3 \\ \hline 2 & 1 & 2 & 2 & 3 \\ \hline 2 & 1 & 2 & 2 & 3 \\ \hline 2 & 1 & 2 & 2 & 3 \\ \hline 2 & 1 & 2 & 2 & 3 \\$ |             |        |       |       |     |      |                                  |       |       |       |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|--------|-------|-------|-----|------|----------------------------------|-------|-------|-------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | MILLIN      | IETERS | INC   | CHES  | ] [ |      | View A - A<br>MILLIMETERS INCHES |       |       | HES   |
| DIM.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | MIN.        | MAX.   | MIN.  | MAX.  |     | DIM. | MIN.                             | MAX.  | MIN.  | MAX.  |
| А                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4.06        | 4.83   | 0.160 | 0.190 |     | D1   | 6.86                             | -     | 0.270 | -     |
| A1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.00        | 0.25   | 0.000 | 0.010 |     | E    | 9.65                             | 10.67 | 0.380 | 0.420 |
| b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.51        | 0.99   | 0.020 | 0.039 |     | E1   | 6.22                             | -     | 0.245 | -     |
| b1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.51        | 0.89   | 0.020 | 0.035 |     | е    | 2.54                             | BSC   | 0.100 | ) BSC |
| b2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.14        | 1.78   | 0.045 | 0.070 |     | Н    | 14.61                            | 15.88 | 0.575 | 0.625 |
| b3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.14        | 1.73   | 0.045 | 0.068 |     | L    | 1.78                             | 2.79  | 0.070 | 0.110 |
| С                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.38        | 0.74   | 0.015 | 0.029 |     | L1   | -                                | 1.65  | -     | 0.066 |
| c1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.38        | 0.58   | 0.015 | 0.023 |     | L2   | -                                | 1.78  | -     | 0.070 |
| c2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.14        | 1.65   | 0.045 | 0.065 |     | L3   | 0.25                             | BSC   | 0.010 | ) BSC |
| D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 8.38        | 9.65   | 0.330 | 0.380 |     | L4   | 4.78                             | 5.28  | 0.188 | 0.208 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 110-Rev. A, |        |       |       |     |      |                                  |       |       |       |

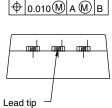
А

# DW0


- 1. Dimensioning and tolerancing per ASME Y14.5M-1994.
- 2. Dimensions are shown in millimeters (inches).
- 3. Dimension D and E do not include mold flash. Mold flash shall not exceed 0.127 mm (0.005") per side. These dimensions are measured at the outmost extremes of the plastic body at datum A.
- 4. Thermal PAD contour optional within dimension E, L1, D1 and E1.
- 5. Dimension b1 and c1 apply to base metal only.
- 6. Datum A and B to be determined at datum plane H.
- 7. Outline conforms to JEDEC outline to TO-263AB.




**Vishay Siliconix** 




## I<sup>2</sup>PAK (TO-262) (HIGH VOLTAGE)





С





-▶|| с

| Section B - B and C - C |
|-------------------------|
| Scale: None             |

-

— (b, b2) —

|                                | MILLIN | IETERS | INC   | HES   |  |  |
|--------------------------------|--------|--------|-------|-------|--|--|
| DIM.                           | MIN.   | MAX.   | MIN.  | MAX.  |  |  |
| А                              | 4.06   | 4.83   | 0.160 | 0.190 |  |  |
| A1                             | 2.03   | 3.02   | 0.080 | 0.119 |  |  |
| b                              | 0.51   | 0.99   | 0.020 | 0.039 |  |  |
| b1                             | 0.51   | 0.89   | 0.020 | 0.035 |  |  |
| b2                             | 1.14   | 1.78   | 0.045 | 0.070 |  |  |
| b3                             | 1.14   | 1.73   | 0.045 | 0.068 |  |  |
| С                              | 0.38   | 0.74   | 0.015 | 0.029 |  |  |
| c1                             | 0.38   | 0.58   | 0.015 | 0.023 |  |  |
| c2                             | 1.14   | 1.65   | 0.045 | 0.065 |  |  |
| ECN: S-82442-Rev. A, 27-Oct-08 |        |        |       |       |  |  |

|      | MILLIN | IETERS | INC       | HES   |  |
|------|--------|--------|-----------|-------|--|
| DIM. | MIN.   | MAX.   | MIN.      | MAX.  |  |
| D    | 8.38   | 9.65   | 0.330     | 0.380 |  |
| D1   | 6.86   | -      | 0.270     | -     |  |
| E    | 9.65   | 10.67  | 0.380     | 0.420 |  |
| E1   | 6.22   | -      | 0.245     | -     |  |
| е    | 2.54   | BSC    | 0.100 BSC |       |  |
| L    | 13.46  | 14.10  | 0.530     | 0.555 |  |
| L1   | -      | 1.65   | -         | 0.065 |  |
| L2   | 3.56   | 3.71   | 0.140     | 0.146 |  |
|      | •      | •      | •         |       |  |
|      |        |        |           |       |  |

c1

¥

DWG: 5977

### Notes

1. Dimensioning and tolerancing per ASME Y14.5M-1994.

2. Dimension D and E do not include mold flash. Mold flash shall not exceed 0.127 mm per side. These dimensions are measured at the outmost extremes of the plastic body.


3. Thermal pad contour optional within dimension E, L1, D1, and E1.

4. Dimension b1 and c1 apply to base metal only.

Document Number: 91367 Revision: 27-Oct-08



## **RECOMMENDED MINIMUM PADS FOR D<sup>2</sup>PAK: 3-Lead**



Recommended Minimum Pads Dimensions in Inches/(mm)

Return to Index



Vishay

# Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Hyperlinks included in this datasheet may direct users to third-party websites. These links are provided as a convenience and for informational purposes only. Inclusion of these hyperlinks does not constitute an endorsement or an approval by Vishay of any of the products, services or opinions of the corporation, organization or individual associated with the third-party website. Vishay disclaims any and all liability and bears no responsibility for the accuracy, legality or content of the third-party website or for that of subsequent links.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.