

www.vishay.com

Vishay Semiconductors

Ultrabright White LED, Ø 3 mm

DESCRIPTION

The VLHW4400 is a diffused, untinted 3 mm LED for high end applications where supreme luminous intensity is required.

These lamps utilize the highly developed ultrabright InGaN technologies.

The lens and the viewing angle is optimized to achieve best performance of light output and visibility.

PRODUCT GROUP AND PACKAGE DATA

• Product group: LED • Package: 3 mm

· Product series: standard • Angle of half intensity: ± 30°

FEATURES

- · Diffused, untinted lens
- Utilizing ultrabright InGaN technology
- · High luminous intensity
- · Luminous intensity and color categorized for each packing unit
- ESD-withstand voltage: up to 2 kV according to JESD22-A114-B
- Material categorization: for definitions of compliance please see www.vishay.com/doc?99912

RoHS

HALOGEN FREE

GREEN

APPLICATIONS

- · Interior and exterior lighting
- Outdoor LED panels
- Instrumentation and front panel indicators
- Replaces incandescent lamps
- · Light guide compatible

PARTS TABLE														
PART	COLOR	-	JMINO TENSI (mcd)	TY	at I _F (mA)	\^1 \/		at I _F (mA)	FORWARD VOLTAGE (V)		at I _F (mA)	TECHNOLOGY		
		MIN.	TYP.	MAX.		MIN.	TYP.	MAX.		MIN.	TYP.	MAX.		
VLHW4400-JKPL	Cool white	560	900	1400	5	-	0.33, 0.33	-	5	2.6	2.8	3.2	5	InGaN and converter
VLHW4400-LKNL	Cool white	560	900	1400	5	-	0.33, 0.33	-	5	2.6	2.8	3.2	5	InGaN and converter
VLHW4400-QPMM	Warm white	450	800	1125	5	-	0.44, 0.41	-	5	2.6	2.8	3.2	5	InGaN and converter

ABSOLUTE MAXIMUM RATINGS (T _{amb} = 25 °C, unless otherwise specified) VLHW4400-JKPL, VLHW4400-LKNL, VLHW4400-QPMM						
PARAMETER	TEST CONDITION	SYMBOL	VALUE	UNIT		
Reverse voltage		V_R	5	V		
DC forward current		I _F	20	mA		
Peak forward current	at 1 kHz, t _p /T = 0.1	I _{FSM}	0.1	Α		
Power dissipation		P _V	85	mW		
Junction temperature		Tj	+120	°C		
Operating temperature range		T _{amb}	-40 to +85	°C		
Storage temperature range		T _{stg}	-40 to +85	°C		
Soldering temperature	t ≤ 5 s	T _{sd}	260	°C		
Thermal resistance junction-to-ambient		R _{thJA}	400	K/W		

Rev. 1.2, 01-Feb-2021 Document Number: 82565

www.vishay.com

Vishay Semiconductors

OPTICAL AND ELECTRICAL CHARACTERISTICS (T _{amb} = 25 °C, unless otherwise specified) VLHW4400-JKPL, VLHW4400-LKNL, COOL WHITE						
PARAMETER	TEST CONDITION	SYMBOL	MIN.	TYP.	MAX.	UNIT
Luminous intensity	I _F = 5 mA	I _V	560	900	1400	mcd
Chromatically coordinate x acc. to CIE 1931	I _F = 5 mA	х	-	0.33	-	
Chromatically coordinate y acc. to CIE 1931	I _F = 5 mA	у	-	0.33	-	
Angle of half intensity	I _F = 5 mA	φ	-	± 30	-	0
Forward voltage (1)	I _F = 5 mA	V_{F}	2.6	2.8	3.2	V
Reverse current	V _R = 5 V	I _R	-	-	10	μΑ

Note

⁽¹⁾ Forward voltage is tested at a current pulse duration of 1 ms and a tolerance of \pm 0.1 V

OPTICAL AND ELECTRICAL CHARACTERISTICS (T _{amb} = 25 °C, unless otherwise specified) VLHW4400-QPMM, WARM WHITE						
PARAMETER	TEST CONDITION	SYMBOL	MIN.	TYP.	MAX.	UNIT
Luminous intensity	$I_F = 5 \text{ mA}$	l _V	450	800	1125	mcd
Chromatically coordinate x acc. to CIE 1931	$I_F = 5 \text{ mA}$	х	-	0.44	-	
Chromatically coordinate y acc. to CIE 1931	I _F = 5 mA	у	=	0.41	-	
Angle of half intensity	I _F = 5 mA	φ	=	± 30	-	0
Forward voltage (1)	I _F = 5 mA	V_{F}	2.6	2.8	3.2	V
Reverse current	V _R = 5 V	I _R	-	-	10	μA

Note

 $^{^{(1)}}$ Forward voltage is tested at a current pulse duration of 1 ms and a tolerance of \pm 0.1 V

www.vishay.com

Vishay Semiconductors

	x	Y		X	Y
	0.2960	0.2590		0.3189	0.3302
	0.2910	0.2680		0.3288	0.3452
JK	0.3005	0.2825	ML	0.3288	0.3282
	0.3045	0.2715		0.3197	0.3131
	0.2910	0.2680		0.3288	0.3081
	0.2850	0.2790	NIZ	0.3288	0.3282
JL	0.2960	0.2955	NK	0.3386	0.3426
	0.3005	0.2825		0.3386	0.3235
	0.3045	0.2715		0.3288	0.3282
IZIZ	0.3005	0.2825	NII.	0.3288	0.3453
KK	0.3100	0.2970	NL	0.3386	0.3591
	0.3130	0.2840		0.3386	0.3426
	0.3005	0.2825		0.3386	0.3235
141	0.2960	0.2955	OK	0.3386	0.3426
KL	0.3070	0.3120	OK	0.3484	0.3571
	0.3100	0.2970		0.3484	0.3388
	0.3100	0.2970		0.3386	0.3426
LK	0.3197	0.3131	OL	0.3386	0.3591
LK	0.3205	0.2956	OL	0.3484	0.3730
	0.3130	0.2840		0.3484	0.3571
	0.3070	0.3120		0.3484	0.3388
LL	0.3189	0.3302	PK	0.3484	0.3571
LL	0.3197	0.3131	FK	0.3582	0.3715
	0.3100	0.2970		0.3582	0.3542
	0.3197	0.3131		0.3484	0.3571
MIZ	0.3288	0.3282	DI	0.3484	0.3730
MK	0.3288	0.3081	PL	0.3582	0.3792

Note

• Chromaticity coordinate groups are tested at a current pulse duration of 25 ms and a tolerance of \pm 0.01

www.vishay.com

Vishay Semiconductors

	Х	Υ		Х	Y
	0.421	0.433		0.452	0.443
	0.437	0.438		0.469	0.448
QM	0.430	0.421	NM	0.460	0.431
	0.415	0.416		0.444	0.426
	0.415	0.416		0.444	0.426
	0.430	0.421		0.460	0.431
QN	0.423	0.405	NN	0.451	0.414
	0.409	0.400		0.436	0.409
	0.409	0.400		0.436	0.409
	0.423	0.405		0.451	0.409
QO	0.416	0.387	NO	0.443	0.414
	0.402	0.382		0.428	0.392
	0.402	0.382		0.428	0.392
QP	0.416	0.387	NP	0.443	0.392
	0.409	0.372		0.435	0.382
	0.397	0.367		0.421	0.377
	0.437	0.438		0.469	0.448
	0.452	0.443		0.487	0.454
PM	0.444	0.426	MM	0.477	0.437
	0.430	0.421		0.460	0.431
	0.430	0.421		0.460	0.431
	0.444	0.426		0.477	0.437
PN	0.436	0.409	MN	0.467	0.420
	0.423	0.405		0.451	0.414
	0.423	0.405		0.451	0.414
	0.436	0.409		0.467	0.420
PO	0.428	0.392	MO	0.458	0.403
	0.416	0.387		0.443	0.397
	0.416	0.387		0.443	0.397
	0.428	0.392		0.458	0.403
PP	0.421	0.377	MP	0.449	0.388
	0.409	0.372		0.435	0.382

Note

• Chromaticity coordinate groups are tested at a current pulse duration of 25 ms and a tolerance of \pm 0.01

LUMINOUS INTENSITY CLASSIFICATION						
GROUP	LIGHT INTENSITY (mcd)					
STANDARD	MIN.	MAX.				
U1	450	560				
U2	560	715				
V1	715	900				
V2	900	1125				
W1	1125	1400				

Note

• Luminous intensity is tested with an accuracy of \pm 15 %.

The above type Numbers represent the order groups which include only a few brightness groups. Only one group will be shipped on each reel (there will be no mixing of two groups on each reel). In order to ensure availability, single brightness groups will not be orderable.

In a similar manner for colors where color groups are measured and binned, single color groups will be shipped on any one reel. In order to ensure availability, single color groups will not be orderable

www.vishay.com

Vishay Semiconductors

TYPICAL CHARACTERISTICS (T_{amb} = 25 °C, unless otherwise specified)

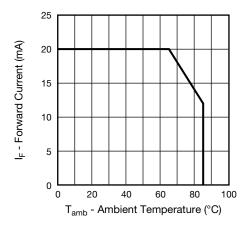


Fig. 1 - Forward Current vs. Ambient Temperature

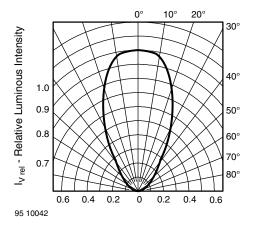


Fig. 2 - Relative Luminous Intensity vs. Angular Displacement

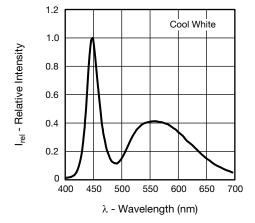


Fig. 3 - Relative Intensity vs. Wavelength

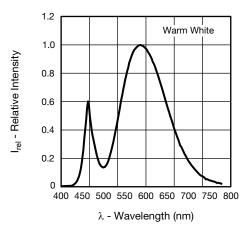


Fig. 4 - Relative Intensity vs. Wavelength

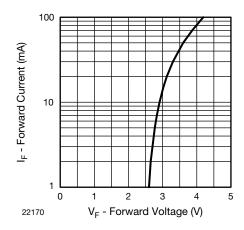


Fig. 5 - Forward Current vs. Forward Voltage

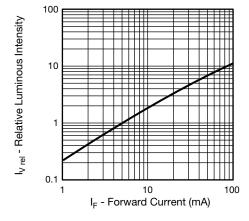


Fig. 6 - Relative Luminous Intensity vs. Forward Current

www.vishay.com

Vishay Semiconductors

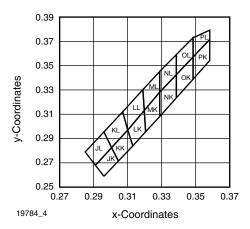


Fig. 7 - Coordinates of Colorgroups for Cool White

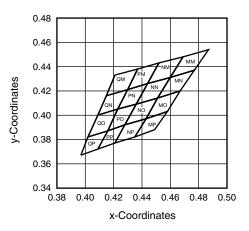
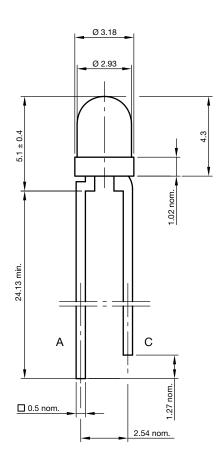



Fig. 8 - Coordinates of Colorgroups for Warm White

PACKAGE DIMENSIONS in millimeters

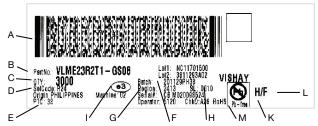
technical drawings according to DIN specifications

Not indicated tolerances ± 0.25

Drawing-No.: 6.544-5403.01-4

Issue: 2; 18.06.10

21948


Rev. 1.2, 01-Feb-2021 6 Document Number: 82565

www.vishay.com

Vishay Semiconductors

BAR CODE PRODUCT LABEL (example only)

- A) 2D barcode
- B) Vishay part number
- C) Quantity
- D) PTC = selection code (binning)
- E) Code of manufacturing plant
- F) Batch = date code: year / week / plant code
- G) Region code
- H) SL = sales location
- I) Terminations finishing
- K) Lead (Pb)-free symbol
- L) Halogen-free symbol
- M) RoHS symbol

Legal Disclaimer Notice

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

© 2021 VISHAY INTERTECHNOLOGY, INC. ALL RIGHTS RESERVED