VISHAY.

Vishay Semiconductors

Power SMD LED PLCC-4

DESCRIPTION

The VLMW32.. white LED is an advanced product in terms of heat dissipation.

The leadframe profile of this PLCC-4 SMD package is optimized to reduce the thermal resistance.

This allows higher drive current and doubles the light output compared to Vishay's high intensity SMD LED in PLCC-2 standard package.

PRODUCT GROUP AND PACKAGE DATA

Product group: LEDPackage: PLCC-4

Product series: SMD Power
 Angle of half intensity: ± 60°

FEATURES

- High efficient INGaN technology
- Angle of half intensity $\varphi = \pm 60^{\circ}$
- · Available in 8 mm tape
- Luminous intensity, color and forward voltage categorized per packing unit
- Luminous intensity ratio per packing unit $I_{Vmax}/I_{Vmin} \le 1.6$
- ESD-withstand voltage: up to 1 kV according to JESD22-A114-B
- · Lead (Pb)-free device
- Preconditioning: according to Jedec Level 2a
- Compatible with IR-Reflow, vapor phase and wave soldering processes according to CECC 00802 and J-STD-020C
- Component in accordance to RoHS 2002/95/EC and WEEE 2002/96/EC
- Automotive qualified AEC-Q101

APPLICATIONS

- · Camera flash light
- · Signal and symbol luminaire
- · Marker lights
- Interior and exterior automotive lighting (brake lights, turn lights, backlighting, side markers)
- · Indicator lighting

PARTS TABLE			
PART	COLOR, LUMINOUS INTENSITY	TECHNOLOGY WAVELENGTH	
VLMW32T2V1-5K8L-08	White, I _V = (355 to 900) mcd	InGaN/TAG on SiC	
VLMW32T2V1-5K8L-18	White, I _V = (355 to 900) mcd	InGaN/TAG on SiC	
VLMW32U2V2-5K8L-08	White, I _V = (560 to 1120) mcd	InGaN/TAG on SiC	
VLMW32U2V2-5K8L-18	White, I _V = (560 to 1120) mcd	InGaN/TAG on SiC	
VLMW32T1V2-5K8L-08	White, I _V = (280 to 1120) mcd	InGaN/TAG on SiC	
VLMW32T1V2-5K8L-18	White, I _V = (280 to 1120) mcd	InGaN/TAG on SiC	
VLMW32U2AA-5K8L-08	White, I _V = (560 to 1400) mcd	InGaN/TAG on SiC	
VLMW32U2AA-5K8L-18	White, I _V = (560 to 1400) mcd	InGaN/TAG on SiC	
VLMW32V2AB-5K8L-08	White, I _V = (900 to 1800) mcd	InGaN/TAG on SiC	
VLMW32V2AB-5K8L-18	White, I _V = (900 to 1800) mcd	InGaN/TAG on SiC	

Document Number 81619 Rev. 1.1, 20-Jul-07

ABSOLUTE MAXIMUM RATINGS ¹⁾ VLMW32					
PARAMETER	TEST CONDITION	SYMBOL	VALUE	UNIT	
Reverse voltage ²⁾		V _R	5	V	
DC Forward current	T _{amb} ≤ 65 °C	I _F	30	mA	
Surge forward current	t _p ≤ 10 μs	I _{FSM}	0.1	Α	
Power dissipation		PV	127	mW	
Junction temperature		T _j	100	°C	
Operating temperature range		T _{amb}	- 40 to + 100	°C	
Storage temperature range		T _{stg}	- 40 to + 100	°C	
Soldering temperature	t ≤ 5 s	T _{sd}	260	°C	
Thermal resistance junction/ambient	mounted on PC board (pad design see page 6)	R _{thJA}	270	K/W	

T_{amb} = 25 °C, unless otherwise specified
 Driving the LED in reverse direction is suitable for a short term application

OPTICAL AND ELECTRICAL CHARACTERISTICS ¹⁾ VLMW32, WHITE							
PARAMETER	TEST CONDITION	PART	SYMBOL	MIN	TYP.	MAX	UNIT
	I _F = 30 mA	VLMW32T2V1-5K8L	I _V	355		900	mcd
		VLMW32U2V2-5K8L	I _V	560		1120	mcd
Luminous intensity		VLMW32T1V2-5K8L	I _V	280		1120	mcd
		VLMW32U2AA-5K8L	I _V	560		1400	mcd
		VLMW32V2AB-5K8L	I _V	900		1800	mcd
Luminous Flux	I _F = 30 mA	VLMW32T2V1-5K8L	φV	1100		2800	mlm
		VLMW32U2V2-5K8L	φV	1700		3500	mlm
		VLMW32T1V2-5K8L	φV	860		3500	mlm
		VLMW32U2AA-5K8L	φV	1736		4340	mlm
		VLMW32V2AB-5K8L	φV	2790		5580	mlm
Chromaticity coordinate x, y	I _E = 30 mA		Х		0.33		
acc. to CIE 1931	1F = 00 111/1		У		0.33		
Angle of half intensity	$I_F = 30 \text{ mA}$		φ		± 60		deg
Forward voltage	I _F = 30 mA		V _F		3.7	4.2	V
Reverse voltage	I _R = 10 μA		V _R	5			V
Temperature coefficient of V _F	I _F = 20 mA		TC _{VF}		- 4		mV/K
Temperature coefficient of I _V	I _F = 20 mA		TC _{IV}		- 0.5		%/K

www.vishay.com Document Number 81619 Rev. 1.1, 20-Jul-07

Note: $^{1)}$ T_{amb} = 25 °C, unless otherwise specified

LUMINOUS INTENSITY CLASSIFICATION				
GROUP	LIGHT INTENSITY (MCD)			
STANDARD	MIN	MAX		
T1	280	355		
T2	355	450		
U1	450	560		
U2	560	710		
V1	710	900		
V2	900	1120		
AA	1120	1400		
AB	1400	1800		

CROSSING TABLE				
VISHAY	OSRAM	NICHIA		
VLMW32T2V1	LWE67C-T2V1	NSCW021T		
VLMW32U2V2	LWE67C-U2V2	NSCW021T		
VLMW32T1V2	LWE67C-T1V2	NSCW021T		
VLMW32U2AA	LWE6SC-U2AA	NSCW021T		
VLMW32V2AB	LWE6SC-V2AB	NSCW021T		

Note:

Luminous intensity is tested at a current pulse duration of 25 ms and an accuracy of \pm 11 %.

The above type numbers represent the order groups which include only a few brightness groups. Only one group will be shipped on each reel (there will be no mixing of two groups on each reel).

In order to ensure availability, single brightness groups will not be orderable.

In a similar manner for colors where wavelength groups are measured and binned, single wavelength groups will be shipped on any one reel.

In order to ensure availability, single wavelength groups will not be orderable.

CHROMATIC	ITY COORDINA	TED GROUPS	FOR WH	IITE SMD L	.ED
	Х	Y			
	0.291	0.268			
5L	0.285	0.279		7L	
5L	0.307	0.312		/L	
	0.310	0.297			
	0.296	0.259			
EV	0.291	0.268		7K	
5K	0.310	0.297			
	0.313	0.284			
	0.310	0.297			
CI	0.307	0.312		8L	
6L	0.330	0.347			
	0.330	0.330			
6K	0.313	0.284		8K	
	0.310	0.297			
	0.330	0.330		on	
	0.330	0.310			

	X	Υ
7L	0.330	0.330
	0.330	0.347
/ _	0.347	0.371
	0.345	0.352
	0.330	0.310
7K	0.330	0.330
/ N	0.338	0.342
	0.352	0.344
	0.345	0.352
8L	0.347	0.371
0L	0.367	0.401
	0.364	0.380
8K	0.352	0.344
	0.338	0.342
	0.364	0.380
	0.360	0.357

Note

Chromaticity coordinate groups are tested at a current pulse direction of 25 ms and a tolerance of ± 0.01.

VISHAY.

TYPICAL CHARACTERISTICS

T_{amb} = 25 °C, unless otherwise specified

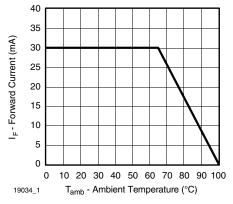


Figure 1. Forward Current vs. Ambient Temperature

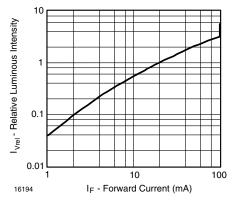


Figure 2. Relative Luminous Intensity vs. Forward Current

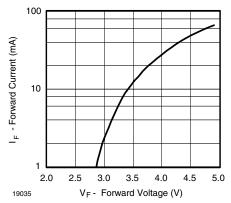


Figure 3. Forward Current vs. Forward Voltage

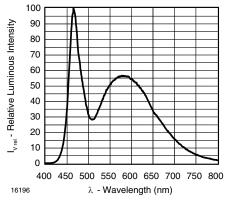


Figure 4. Relative Intensity vs. Wavelength

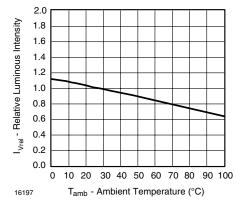
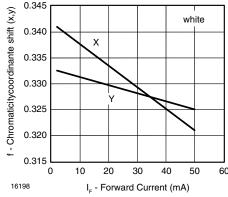


Figure 5. Rel. Luminous Intensity vs. Ambient Temperature



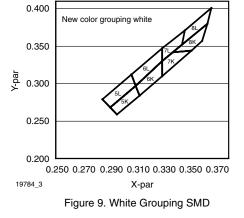

Figure 6. Chromaticity Coordinate Shift vs. Forward Current

Figure 7. Forward Voltage vs. Ambient Temperature

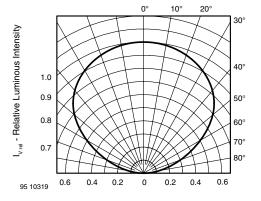
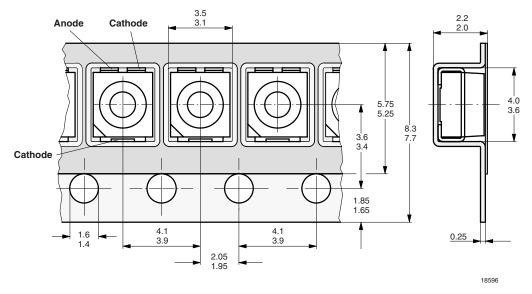
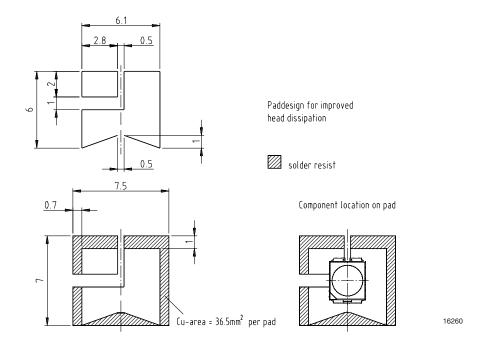
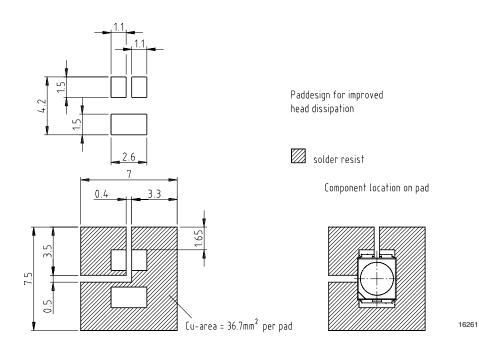



Figure 8. Rel. Luminous Intensity vs. Angular Displacement

Figure 10. Change of Forward Voltage vs. Ambient Temperature


TAPING Dimensions in millimeters

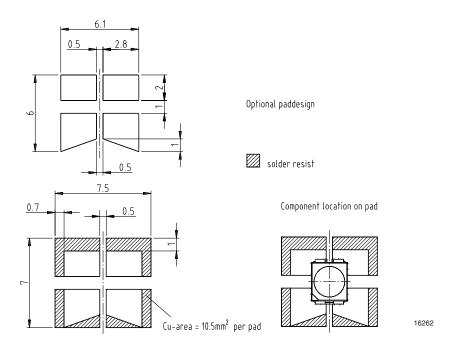

RECOMMENDED PAD DESIGN Dimensions in millimeters

(Wave-Soldering), $R_{thJA} = 270 \text{ K/W}$

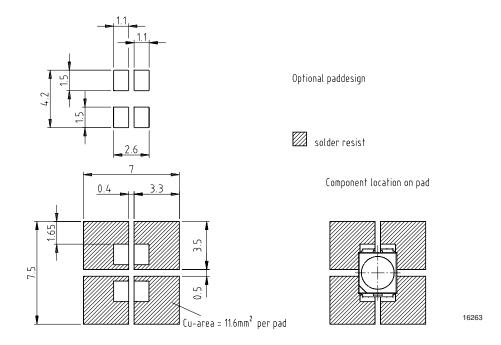
RECOMMENDED PAD DESIGN Dimensions in millimeters

(Reflow-Soldering), $R_{thJA} = 270 \text{ K/W}$

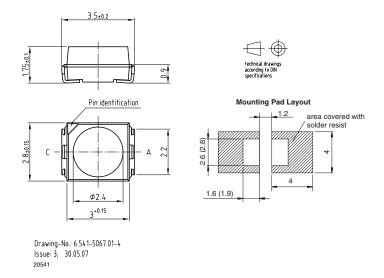
www.vishay.com


Document Number 81619

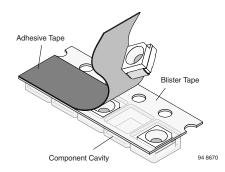
Rev. 1.1, 20-Jul-07


OPTIONAL PAD DESIGN Dimensions in millimeters

(Wave-Soldering), $R_{thJA} = 290 \text{ K/W}$


OPTIONAL PAD DESIGN Dimensions in millimeters

(Reflow-Soldering), $R_{thJA} = 290 \text{ K/W}$


VISHAY.

PACKAGE DIMENSIONS in millimeters

METHOD OF TAPING/POLARITY AND TAPE AND REEL SMD LED (VLM.3 - SERIES) REEL

Vishay's LEDs in SMD packages are available in an antistatic 8 mm blister tape (in accordance with DIN IEC 40 (CO) 564) for automatic component insertion. The blister tape is a plastic strip with impressed component cavities, covered by a top tape.

TAPING OF VLM.3...

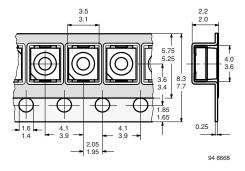


Figure 11. Tape dimensions in mm for PLCC-x

REEL PACKAGE DIMENSION IN MM FOR SMD LEDS, TAPE OPTION GS08 (= 1500 PCS.)

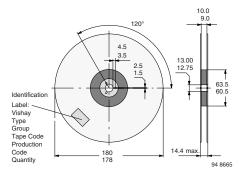


Figure 12. Reel dimensions - GS08

REEL PACKAGE DIMENSION IN MM FOR SMD LEDS, TAPE OPTION GS18 (= 8000 PCS.) PREFERED

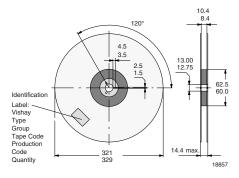


Figure 13. Reel dimensions - GS18

SOLDERING PROFILE

IR Reflow Soldering Profile for lead (Pb)-free soldering Preconditioning acc. to JEDEC Level 2a 300 max. 260 °C 250 245 °C 240 °C -217 °C 200 max. 30 s 150 100 max. Ramp Up 3 °C/s max. Ramp Down 6 °C/s 50 0 50 100 150 200 250 300 19470-3 t [s] max. 2 cycles allowed

Figure 14. Vishay Lead (Pb)-free Reflow Soldering Profile (acc. to J-STD-020C)

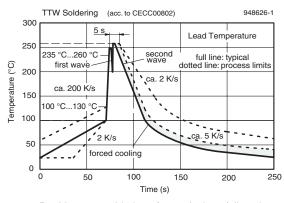
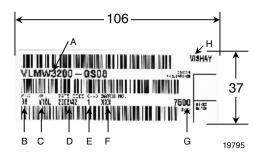
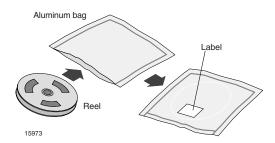



Figure 15. Double wave soldering of opto devices (all packages)

BARCODE-PRODUCT-LABEL EXAMPLE:


- A) Type of component
- B) Manufacturing plant
- C) SEL Selection Code (Bin):

e.g.: V1 = Code for Luminous Intensity Group 5L = Code for Chrom. Coordinate Group

- D) Date Code year/week
- E) Day Code (e. g. 1: Monday)
- F) Batch No.
- G) Total quantity
- H) Company code

DRY PACKING

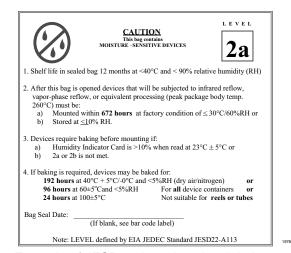
The reel is packed in an anti-humidity bag to protect the devices from absorbing moisture during transportation and storage.

The sealed reel is packed into a cardboard box. A secondary cardboard box is used for shipping purposes.

RECOMMENDED METHOD OF STORAGE

Dry box storage is recommended as soon as the aluminum bag has been opened to prevent moisture absorption. The following conditions should be observed, if dry boxes are not available:

- Storage temperature 10 °C to 30 °C
- Storage humidity ≤ 60 % RH max.


After more than 672 hours under these conditions moisture content will be too high for reflow soldering. In case of moisture absorption, the devices will recover to the former condition by drying under the following condition:

192 hours at 40 °C + 5 °C/- 0 °C and < 5 % RH (dry air/nitrogen) or

96 hours at 60 $^{\circ}$ C + 5 $^{\circ}$ C and < 5 $^{\circ}$ RH for all device containers or

24 hours at 100 °C + 5 °C not suitable for reel or tubes. An EIA JEDEC Standard JESD22-A112 Level 2a label is included on all dry bags.

Example of JESD22-A112 Level 2a label

ESD PRECAUTION

Proper storage and handling procedures should be followed to prevent ESD damage to the devices especially when they are removed from the Antistatic Shielding Bag. Electro-Static Sensitive Devices warning labels are on the packaging.

www.vishay.com

Document Number 81619

Rev. 1.1, 20-Jul-07

OZONE DEPLETING SUBSTANCES POLICY STATEMENT

It is the policy of Vishay Semiconductor GmbH to

- 1. Meet all present and future national and international statutory requirements.
- 2. Regularly and continuously improve the performance of our products, processes, distribution and operating systems with respect to their impact on the health and safety of our employees and the public, as well as their impact on the environment.

It is particular concern to control or eliminate releases of those substances into the atmosphere which are known as ozone depleting substances (ODSs).

The Montreal Protocol (1987) and its London Amendments (1990) intend to severely restrict the use of ODSs and forbid their use within the next ten years. Various national and international initiatives are pressing for an earlier ban on these substances.

Vishay Semiconductor GmbH has been able to use its policy of continuous improvements to eliminate the use of ODSs listed in the following documents.

- 1. Annex A, B and list of transitional substances of the Montreal Protocol and the London Amendments respectively
- 2. Class I and II ozone depleting substances in the Clean Air Act Amendments of 1990 by the Environmental Protection Agency (EPA) in the USA
- 3. Council Decision 88/540/EEC and 91/690/EEC Annex A, B and C (transitional substances) respectively.

Vishay Semiconductor GmbH can certify that our semiconductors are not manufactured with ozone depleting substances and do not contain such substances.

We reserve the right to make changes to improve technical design and may do so without further notice.

Parameters can vary in different applications. All operating parameters must be validated for each customer application by the customer. Should the buyer use Vishay Semiconductors products for any unintended or unauthorized application, the buyer shall indemnify Vishay Semiconductors against all claims, costs, damages, and expenses, arising out of, directly or indirectly, any claim of personal damage, injury or death associated with such unintended or unauthorized use.

Vishay Semiconductor GmbH, P.O.B. 3535, D-74025 Heilbronn, Germany

Vishay

Disclaimer

All product specifications and data are subject to change without notice.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained herein or in any other disclosure relating to any product.

Vishay disclaims any and all liability arising out of the use or application of any product described herein or of any information provided herein to the maximum extent permitted by law. The product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein, which apply to these products.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications unless otherwise expressly indicated. Customers using or selling Vishay products not expressly indicated for use in such applications do so entirely at their own risk and agree to fully indemnify Vishay for any damages arising or resulting from such use or sale. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

Product names and markings noted herein may be trademarks of their respective owners.

Document Number: 91000

www.vishay.com Revision: 18-Jul-08