P-Channel Enhancement-Mode MOSFET Transistors

Product Summary

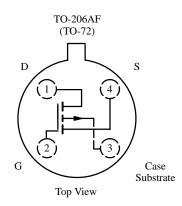
Part Number	V _{(BR)DSS} Min (V)	V _{GS(th)} (V)	r _{DS(on)} Max (Ω)	I _{D(on)} Min (mA)	C _{rss} Max (pF)	t _{ON} Typ (ns)	
3N163	-40	-2 to -5	250	-5	0.7	18	
3N164	-30	-2 to -5	300	-3	0.7	18	

Features

Benefits

- Ultra-Low Input Leakage: 0.02 pA Typ. High Input Impedance Isolation
- High Gate Breakdown Voltage: ±125 V Minimize Handling ESD Problems
- Normally Off

- High Off Isolation without Power


Applications

- Ultra-High Input Impedance Amplifier
- Smoke Detectors
- Electrometers
- Analog Switching
- Digital Switching

Description

The 3N163/164 are lateral p-channel MOSFETs designed for analog switch and preamplifier applications where high speed and low parasitic capacitances are required.

The hermetic TO-206AF package is compatible with military processing per military standards (see Military information).

Absolute Maximum Ratings ($T_A = 25^{\circ}C$ Unless Otherwise Noted)

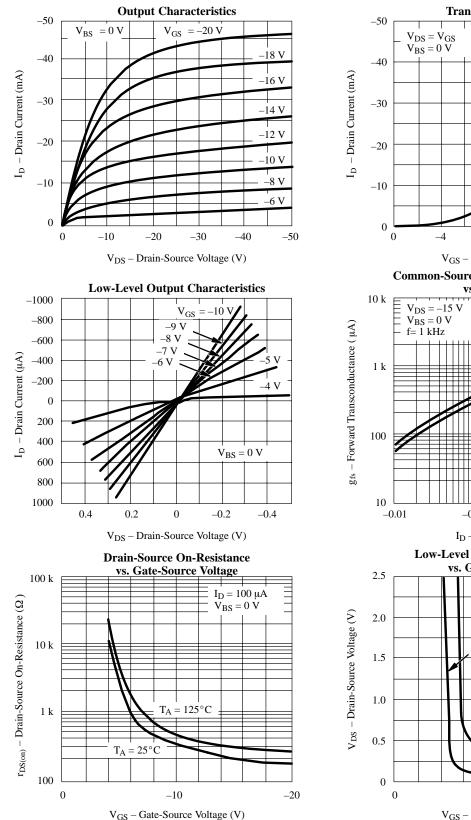
Drain-Source Voltage	(3N164)30 V	Storage Temperature -65 to 200°C Operating Junction Temperature -55 to 150°C Power Dissipation ^a 375 mW					
Continuous Drain Current		Notes:					
	rom case for 10 seconds) $\dots \dots 300^{\circ}C$						

Updates to this data sheet may be obtained via facsimile by calling Siliconix FaxBack, 1-408-970-5600. Please request FaxBack document #70228.

3N163/3N164

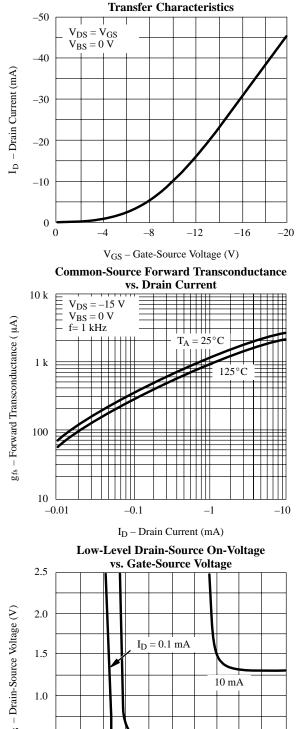
Specifications^a

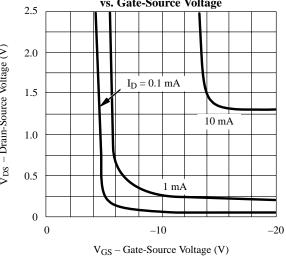
		Test Conditions		Typ ^b	Limits					
					3N163		3N164		1	
Parameter	Symbol				Min	Max	Min	Max	Unit	
Static	•			•	•		•	•		
Drain-Source Breakdown Voltage	V _{(BR)DSS}	$I_D = -10 \ \mu A, \ V_{DS} = 0 \ V$		-70	-40		-30		v	
Source-Drain Breakdown Voltage	V _{(BR)SDS}	$I_S = -10 \ \mu A, \ V_{GD} = V_{BD} = 0 \ V$		-70	-40		-30			
Gate-Threshold Voltage	V _{GS(th)}	$I_D = -10 \ \mu A, \ V_{GS} = V_{DS}$		-2.5	-2	-5	-2	-5		
Gate-Source Voltage	V _{GS}	$I_D = -0.5 \text{ mA}, V_{DS} = -15 \text{ V}$		-3.5	-3	-6.5	-2.5	-6.5		
	I _{GSS}	$V_{GS} = -40 \text{ V},$	$V_{DS} = 0 V$	<-1		-10				
			$T_A = 125^\circ C^d$	-1						
Gate-Body Leakage		$V_{GS} = -30 V,$	$V_{DS} = 0 V$	<-1				-10	pA	
			$T_A = 125^\circ C^d$	-1						
	I _{DSS}	$V_{\rm DS} = -15 \rm V,$	$V_{GS} = 0 V$	-8		-200		-400		
Zero-Gate Voltage Drain Current			$T_A = 125^\circ C^d$	-20					nA	
	I _{SDS}	$V_{GD} = V_{BD} = 0 V$	$V, V_{SD} = -20 V$	-10		-400		-800	pА	
Zero-Gate Voltage Source Current			$T_A = 125^\circ C^d$	-25					nA	
On-State Drain Current ^c	I _{D(on)}	$V_{DS} = -15 \text{ V}, V_{GS} = -10 \text{ V}$		-10	-5	-30	-3	-30	mA	
	r _{DS(on)}	$V_{GS} = -20 \text{ V}, \text{ I}_{I}$	$_{\rm O} = -100 \ \mu {\rm A}$	180		250		300	Ω	
Drain-Source On-Resistance			$T_A = 125^\circ C^d$	270						
Dynamic		-								
Forward Transconductance ^c	gfs	$V_{DS} = -15 \text{ V}, I_D = -10 \text{ mA}$ $f = 1 \text{ kHz}$		2.7	2	4	1	4	mS	
Common-Source Output Conductance ^c	g _{os}			150		250		250	μS	
Input Capacitance	C _{iss}	$V_{DS} = -15 \text{ V}, I_D = -10 \text{ mA}$ $f = 1 \text{ MHz}$		2.4		3.5		3.5	pF	
Output Capacitance	Coss			2.5		3		3		
Reverse Transfer Capacitance	C _{rss}			0.5		0.7		0.7		
Switching ^e	•	-		-	-	-	-	-		
	t _{d(on)}	$V_{DD} = -15 \text{ V}, \text{R}_{L} = 1500 \Omega$ $\text{I}_{D} \cong -10 \text{ mA}, \text{V}_{GEN} = -12 \text{ V}$		5		12		12	ns	
Turn-On Time	t _r			13		24		24		
Turn-Off Time t _{d(}		$R_G = 50 \Omega$		25		50		50		

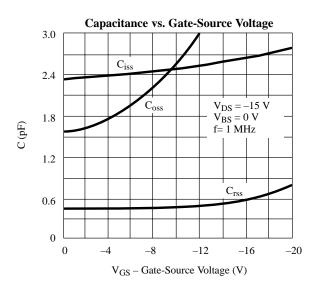

Notes:

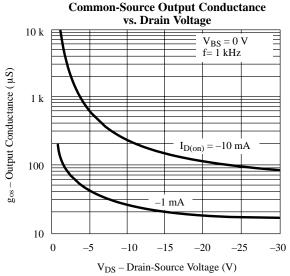
a. $T_A = 25^{\circ}C$ unless otherwise noted. b. Typical values are for DESIGN AID ONLY, not guaranteed nor subject to production testing. c. Pulse test: PW $\leq 300 \ \mu s$ duty cycle $\leq 3\%$.

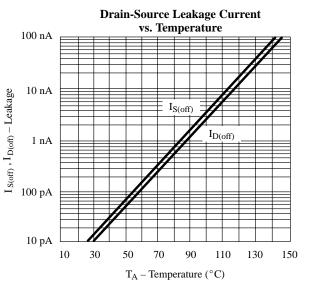
d.

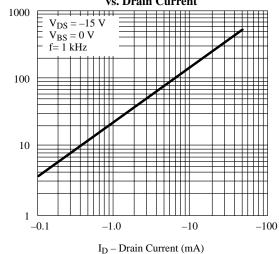

This parameter not registered with JEDEC. Switching time is essentially independent of operating temperature. e.

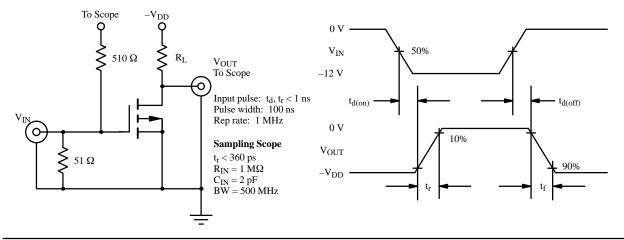

MRA


Typical Characteristics


Siliconix P-37404-Rev. D, 04-Jul-94




Typical Characteristics (Cont'd)



Common-Source Output Conductance vs. Drain Current

Switching Time Test Circuit

 g_{os} – Output Conductance (μS)

Vishay

Disclaimer

All product specifications and data are subject to change without notice.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained herein or in any other disclosure relating to any product.

Vishay disclaims any and all liability arising out of the use or application of any product described herein or of any information provided herein to the maximum extent permitted by law. The product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein, which apply to these products.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications unless otherwise expressly indicated. Customers using or selling Vishay products not expressly indicated for use in such applications do so entirely at their own risk and agree to fully indemnify Vishay for any damages arising or resulting from such use or sale. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

Product names and markings noted herein may be trademarks of their respective owners.