

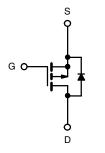
P-Channel 20-V (D-S) MOSFET

PRODUCT SUMMARY					
V _{DS} (V)	$R_{DS(on)}\left(\Omega\right)$ Max.	I _D (A) ^d	Q _g (Typ.)		
	0.039 at V _{GS} = - 4.5 V	- 5.3			
- 20	0.050 at V _{GS} = - 2.5 V	- 4.7	13.6 nC		
	0.075 at V _{GS} = - 1.8 V	- 3.8			

Ordering Information:

Si2323DDS-T1-GE3 (Lead (Pb)-free and Halogen-free)

FEATURES


- TrenchFET® Power MOSFET
- 100 % R_a Tested
- Material categorization: For definitions of compliance please see www.vishay.com/doc?99912

HALOGEN FREE

APPLICATIONS

- Load Switch
- PA Switch
- DC/DC Converters
- **Power Management**

P-Channel MOSFET

ABSOLUTE MAXIMUM RATINGS	$T_A = 25 ^{\circ}C$, unle	ess otherwise r	noted)		
Parameter	Symbol	Limit	Unit		
Drain-Source Voltage	V_{DS}	- 20	V		
Gate-Source Voltage	V_{GS}	± 8	¬		
	T _C = 25 °C		- 5.3		
Continuous Drain Current /T 150 °C)	T _C = 70 °C	,	- 4.3		
Continuous Drain Current (T _J = 150 °C)	T _A = 25 °C	I _D	- 4.1 ^{a,b}		
	T _A = 70 °C		- 3.2 ^{a,b}	Α	
Pulsed Drain Current (t = 300 μs)		I _{DM}	- 20		
Continuous Course Drain Diade Current	T _C = 25 °C	I _S	- 1.4		
Continuous Source-Drain Diode Current	T _A = 25 °C		- 0.8 ^{a,b}		
	T _C = 25 °C		1.7	W	
Mariana Barra Birata atian	T _C = 70 °C	Б	1.1		
Maximum Power Dissipation	T _A = 25 °C	P_{D}	0.96 ^{a,b}		
	T _A = 70 °C		0.62 ^{a,b}		
Operating Junction and Storage Temperature Ra	T_J, T_stg	- 55 to 150	°C		

THERMAL RESISTANCE RATINGS					
Parameter		Symbol	Typical	Maximum	Unit
Maximum Junction-to-Ambient ^{a, c}	t ≤ 5 s	R_{thJA}	100	130	°C/W
Maximum Junction-to-Foot (Drain)	Steady State	R _{thJF}	60	75	C/VV

Notes:

- a. Surface mounted on 1" x 1" FR4 board.
- b. t = 5 s.
- c. Maximum under steady state conditions is 175 $^{\circ}\text{C/W}.$
- d. $T_C = 25$ °C.

Document Number: 64004 S13-1165-Rev. A, 13-May-13 For technical questions, contact: pmostechsupport@vishav.com

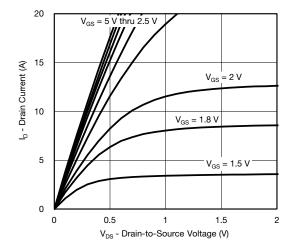
www.vishay.com

Si2323DDS

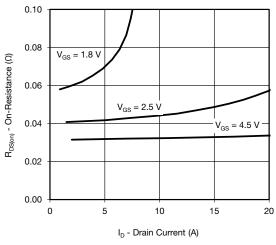
Vishay Siliconix

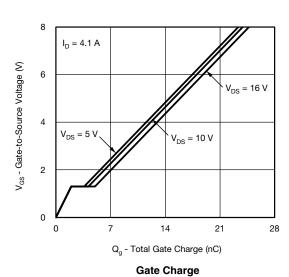
Parameter Symbol Test Conditions Min. Typ. Max. Unit Static	SPECIFICATIONS (T _J = 25 °C, unless otherwise noted)							
Drain-Source Breakdown Voltage V _{DS} V _{GS} = 0 V, I _D = -250 μA -20 V V _{DS} Pemperature Coefficient Δ/V _{DS} (T _J I _D = -250 μA -2.8 mV/°C MV _{CS} (m) Temperature Coefficient Λ/V _{DS} (m) Temperature Coefficient Λ/V _{DS} (m) Temperature Coefficient Λ/D _{SS} (m) V _{DS} = V _{GS} , I _D = -250 μA -0.4 -1.1 V MV/°C MV _{DS} = 0 V V _{DS} = 0 V V _{DS} = 250 μA -0.4 -1.1 V V _{DS} = 0	Parameter	Symbol	Test Conditions	Min.	Тур.	Max.	Unit	
Vos Temperature Coefficient AV _{DS} /T _J V _{DS} Temperature Coefficient AV _{DS} /T _J V _{DS} Temperature Coefficient AV _{DS} (Hy)	Static							
Vos(m) Temperature Coefficient AV _{GS(m)}	Drain-Source Breakdown Voltage	V_{DS}	$V_{GS} = 0 \text{ V}, I_D = -250 \mu\text{A}$	- 20			V	
V _{GS(m)} Temperature Coefficient ΔV _{GS(m)} /T _s V _{DS} = V _{GS} , I _D = -250 μA - 0.4 - 1 V Gate-Source Threshold Voltage I _{GSS} V _{DS} = V _{GS} , I _D = -250 μA - 0.4 ± 100 nA Zero Gate Voltage Drain Current I _{GSS} V _{DS} = -20 V, V _{GS} = 8 V ± 100 nA On-State Drain Current ^a I _{D(m)} V _{DS} = -20 V, V _{GS} = 0 V, T _J = 55 °C - 10 A On-State Drain Current ^a I _{D(m)} V _{DS} = -20 V, V _{GS} = 0 V, T _J = 55 °C - 10 A On-State Drain Current ^a I _{D(m)} V _{DS} = -5 V, V _{GS} = -4 S V - 15 A On-State Drain Current ^a I _{D(m)} V _{DS} = -5 V, V _{GS} = -4 S V - 15 A On-State Drain Current ^a I _{D(m)} V _{DS} = -10 V, V _{GS} = -4 S V - 15 A On-State Drain Current ^a I _{D(m)} V _{DS} = -10 V,	V _{DS} Temperature Coefficient	$\Delta V_{DS}/T_{J}$	I 250 uA		- 13		m\//°C	
Sate-Source Leakage	V _{GS(th)} Temperature Coefficient	$\Delta V_{GS(th)}/T_J$	1Β = - 250 μΑ		- 2.8		IIIV/ C	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Gate-Source Threshold Voltage	V _{GS(th)}	$V_{DS} = V_{GS}, I_{D} = -250 \mu A$	- 0.4		- 1	V	
Description	Gate-Source Leakage	I _{GSS}	$V_{DS} = 0 \text{ V}, V_{GS} = \pm 8 \text{ V}$			± 100	nA	
On-State Drain Current ^a	Zoro Coto Voltago Drain Current	1	$V_{DS} = -20 \text{ V}, V_{GS} = 0 \text{ V}$			- 1	μΑ	
Drain-Source On-State Resistance Pasient Properties Pasient Prope	Zero Gate Voltage Drain Current	'DSS	$V_{DS} = -20 \text{ V}, V_{GS} = 0 \text{ V}, T_{J} = 55 \text{ °C}$			- 10		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	On-State Drain Current ^a	I _{D(on)}	$V_{DS} \le -5 \text{ V}, V_{GS} = -4.5 \text{ V}$	- 15			Α	
V _{GS} = -1.8 V, I _D = -1.4 0.058 0.075			V _{GS} = - 4.5 V, I _D = - 4.1 A		0.032	0.039		
Forward Transconductance ^a g_{fs} $V_{DS} = \cdot 10 \text{ V, } I_{D} = \cdot 4.1 \text{ A}$ 18 S Dynamic ^b Input Capacitance C_{iss} $V_{DS} = \cdot 10 \text{ V, } V_{GS} = 0 \text{ V, } f = 1 \text{ MHz}$ 1160 pF Output Capacitance C_{oss} $V_{DS} = \cdot 10 \text{ V, } V_{GS} = 0 \text{ V, } f = 1 \text{ MHz}$ 135 pF Total Gate Charge Q_g $V_{DS} = \cdot 10 \text{ V, } V_{GS} = \cdot 8 \text{ V, } I_{D} = \cdot 4.1 \text{ A}$ 24 36 Total Gate Charge Q_g $V_{DS} = \cdot 10 \text{ V, } V_{GS} = \cdot 4.5 \text{ V, } I_{D} = \cdot 4.1 \text{ A}$ 2 13.6 21 Gate-Source Charge Q_{gs} $V_{DS} = \cdot 10 \text{ V, } V_{GS} = \cdot 4.5 \text{ V, } I_{D} = \cdot 4.1 \text{ A}$ 2 2 Gate-Drain Charge Q_{gs} $V_{DS} = \cdot 10 \text{ V, } V_{GS} = \cdot 4.5 \text{ V, } I_{D} = \cdot 4.1 \text{ A}$ 2 2 Gate Resistance R_g $f = 1 \text{ MHz}$ 2 10 20 Ω Turn-On Delay Time $t_{d(on)}$ $V_{DD} = \cdot 10 \text{ V, } R_L = 3.1 \Omega$ 22 40 Turn-Off Delay Time t_f $V_{DD} = \cdot 10 \text{ V, } R_L = 3.1 \Omega$ 9 18 Time $V_{DD} $	Drain-Source On-State Resistance ^a	R _{DS(on)}	V _{GS} = - 2.5 V, I _D = - 2 A		0.041	0.050	Ω	
Input Capacitance			V _{GS} = - 1.8 V, I _D = - 1 A		0.058	0.075		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Forward Transconductance ^a	9 _{fs}	V _{DS} = - 10 V, I _D = - 4.1 A		18		S	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Dynamic ^b	•			•	I.	I.	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		C _{iss}			1160			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Output Capacitance	C _{oss}	V _{DS} = - 10 V, V _{GS} = 0 V, f = 1 MHz		135		pF	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Reverse Transfer Capacitance				120			
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Total Gate Charge		V _{DS} = - 10 V, V _{GS} = - 8 V, I _D = - 4.1 A		24	36		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Total Gate Charge				13.6	21		
$ \begin{array}{ c c c c c c c c } \hline \text{Gate-Drain Charge} & Q_{gd} & & 2.2 & & \\ \hline \text{Gate Resistance} & R_g & f = 1 \text{MHz} & 2 & 10 & 20 & \Omega \\ \hline \text{Turn-On Delay Time} & t_{d(on)} & & 24 & 36 & \\ \hline \text{Rise Time} & t_r & & 22 & 40 & \\ \hline \text{Turn-Off Delay Time} & t_{d(off)} & & & 22 & 40 \\ \hline \text{Turn-Off Delay Time} & t_{d(off)} & & & 52 & 78 \\ \hline \text{Fall Time} & & t_f & & & 11 & 20 \\ \hline \text{Turn-On Delay Time} & t_{d(on)} & & & & & & & & & & & \\ \hline \text{Rise Time} & & t_r & & & & & & & & & & & & \\ \hline \text{Turn-On Delay Time} & & t_{d(off)} & & & & & & & & & & & & & \\ \hline \text{Rise Time} & & t_r & & & & & & & & & & & & & & & \\ \hline \text{Turn-Off Delay Time} & & t_{d(off)} & & & & & & & & & & & & & & \\ \hline \text{Fall Time} & & & t_r & & & & & & & & & & & & & \\ \hline \text{Turn-Off Delay Time} & & t_{d(off)} & & & & & & & & & & & & & & \\ \hline \text{Turn-Off Delay Time} & & t_{d(off)} & & & & & & & & & & & & & \\ \hline \text{Turn-Off Delay Time} & & t_{d(off)} & & & & & & & & & & & & & \\ \hline \text{Turn-Off Delay Time} & & t_{d(off)} & & & & & & & & & & & & & \\ \hline \text{Turn-Off Delay Time} & & t_{d(off)} & & & & & & & & & & & & \\ \hline \text{Turn-Off Delay Time} & & t_{d(off)} & & & & & & & & & & & & \\ \hline \text{Turn-Off Delay Time} & & t_{d(off)} & & & & & & & & & & & \\ \hline \text{Turn-Off Delay Time} & & t_{d(off)} & & & & & & & & & & \\ \hline \text{Turn-Off Delay Time} & & t_{f} & & & & & & & & & \\ \hline \text{Turn-Off Delay Time} & & t_{f} & & & & & & & & & \\ \hline \text{Rise Time} & & & t_{g} & & & & & & & & & & \\ \hline \text{Turn-Off Delay Time} & & t_{f} & & & & & & & & & \\ \hline \text{Pulse Diode Forward Current} & & I_{S} & & & & & & & & & & \\ \hline \text{Drain-Source Body Diode Characteristics} & & & & & & & & & & \\ \hline \text{Continuous Source-Drain Diode Current} & & I_{S} & & & & & & & & & & \\ \hline \text{Pulse Diode Forward Current} & & I_{S} & & & & & & & & & & \\ \hline \text{Body Diode Reverse Recovery Time} & & t_{rr} & & & & & & & & & & \\ \hline \text{Body Diode Reverse Recovery Charge} & Q_{rr} & & & & & & & & & & \\ \hline \text{Reverse Recovery Fall Time} & & t_{a} & & & & & & & & & \\ \hline \text{Reverse Recovery Fall Time} & & t_{a} & & & & & & & & \\ \hline \end{array}$	Gate-Source Charge		V _{DS} = - 10 V, V _{GS} = - 4.5 V, I _D = - 4.1 A		2		nC	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Gate-Drain Charge	Q _{gd}			2.2			
Turn-On Delay Time $t_{d(on)}$ $V_{DD} = -10 \text{ V}, R_L = 3.1 \Omega$ 24 36 Rise Time t_r $V_{DD} = -10 \text{ V}, R_L = 3.1 \Omega$ 22 40 Turn-Off Delay Time t_f 11 20 Turn-On Delay Time $t_d(on)$ 8 16 Rise Time t_r $V_{DD} = -10 \text{ V}, R_L = 3.1 \Omega$ 9 18 Turn-Off Delay Time $t_d(off)$ $t_{D} = -3.2 \text{ A}, V_{GEN} = -8 \text{ V}, R_g = 1 \Omega$ 58 87 Fall Time t_f 9 18 Drain-Source Body Diode Characteristics 9 18 Continuous Source-Drain Diode Current t_g t_g t_g t_g Pulse Diode Forward Current t_g t_g t_g t_g t_g t_g Body Diode Voltage t_g </td <td>Gate Resistance</td> <td></td> <td>f = 1 MHz</td> <td>2</td> <td>10</td> <td>20</td> <td>Ω</td>	Gate Resistance		f = 1 MHz	2	10	20	Ω	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Turn-On Delay Time	t _{d(on)}			24	36		
	Rise Time		$V_{DD} = -10 \text{ V}, R_{L} = 3.1 \Omega$		22	40		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Turn-Off Delay Time	t _{d(off)}	$I_D \cong -3.2 \text{ A}, V_{GEN} = -4.5 \text{ V}, R_g = 1 \Omega$		52	78		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Fall Time				11	20		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Turn-On Delay Time	t _{d(on)}			8	16	ns	
Fall Time t_f 9 18 Drain-Source Body Diode Characteristics Continuous Source-Drain Diode Current t_S $t_C = 25 ^{\circ}\text{C}$ -1.4 Pulse Diode Forward Current t_S $t_S = -3.2 ^{\circ}\text{A}$, $t_S = 0 ^{\circ}\text{C}$ -0.79 -1.2 V Body Diode Reverse Recovery Time t_T Body Diode Reverse Recovery Charge t_S $t_S = -3.2 ^{\circ}\text{A}$, $t_S = -3.2 ^{\circ}\text{A}$	Rise Time	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			9	18		
	Turn-Off Delay Time	t _{d(off)}	$I_D \cong -3.2 \text{ A}, V_{GEN} = -8 \text{ V}, R_g = 1 \Omega$		58	87		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Fall Time				9	18		
Pulse Diode Forward Current I_{SM} -20 Body Diode Voltage V_{SD} $I_S = -3.2 \text{ A}, V_{GS} = 0 \text{ V}$ -0.79 -1.2 V Body Diode Reverse Recovery Time t_{rr} Body Diode Reverse Recovery Charge Q_{rr} Reverse Recovery Fall Time t_a $I_F = -3.2 \text{ A}, dI/dt = 100 \text{ A/µs}, T_J = 25 ^{\circ}\text{C}$ 8								
Pulse Diode Forward Current I_{SM} -20 Body Diode Voltage V_{SD} $I_S = -3.2 \text{ A}, V_{GS} = 0 \text{ V}$ -0.79 -1.2 V_{SD} Body Diode Reverse Recovery Time V_{rr} -0.79 -1.2 V_{SD} Body Diode Reverse Recovery Charge V_{rr} -0.79 -1.2 -0.79 -0.79 -0.79 -0.79 -0.79 -0.79 -0.79 -0.79 -0.79 -0	Continuous Source-Drain Diode Current	I _S	T _C = 25 °C			- 1.4		
Body Diode Reverse Recovery Time t_{rr} Body Diode Reverse Recovery Charge Q_{rr} Reverse Recovery Fall Time t_a $I_F = -3.2 \text{ A, dl/dt} = 100 \text{ A/µs, T}_J = 25 \text{ °C}$ 8 Inside the second of the secon	Pulse Diode Forward Current	I _{SM}				- 20	A	
Body Diode Reverse Recovery Charge Q_{rr} $I_F = -3.2 \text{ A}, \text{ dI/dt} = 100 \text{ A/}\mu\text{s}, T_J = 25 °C$ 6 12 nC Reverse Recovery Fall Time t_a	Body Diode Voltage	V_{SD}	I _S = - 3.2 A, V _{GS} = 0 V		- 0.79	- 1.2	V	
Body Diode Reverse Recovery Charge Q_{rr}	Body Diode Reverse Recovery Time				14	25	ns	
Reverse Recovery Fall Time t _a 8	Body Diode Reverse Recovery Charge		_ 22 A dl/dt = 100 A/v = T		6	12	nC	
ns	Reverse Recovery Fall Time	t _a	$ 1_F = -3.2 \text{ A}, \text{ al/at} = 100 \text{ A/} \mu \text{s}, 1_J = 25 ^{\circ} \text{C}$		8			
	Reverse Recovery Rise Time				6		ns	

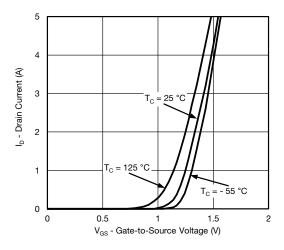
Notes:


Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

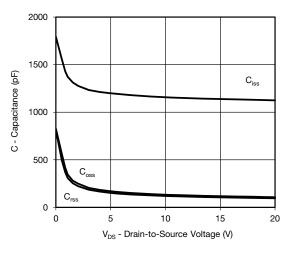
a. Pulse test; pulse width \leq 300 $\mu s,$ duty cycle \leq 2 %.


b. Guaranteed by design, not subject to production testing.

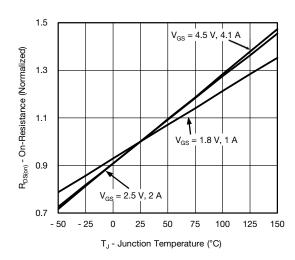

TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)



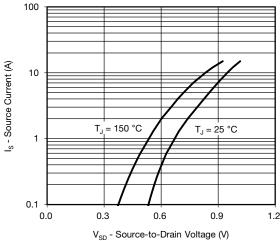
Output Characteristics

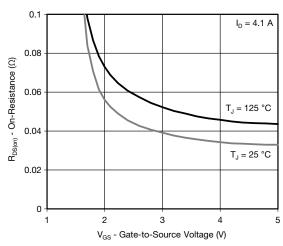


On-Resistance vs. Drain Current and Gate Voltage

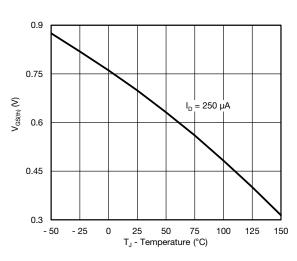


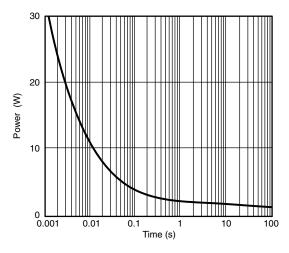
Transfer Characteristics

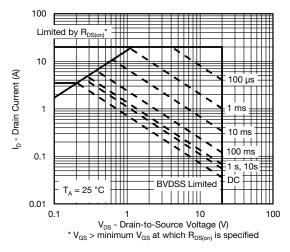

Capacitance


On-Resistance vs. Junction Temperature

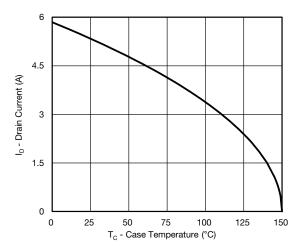
Vishay Siliconix

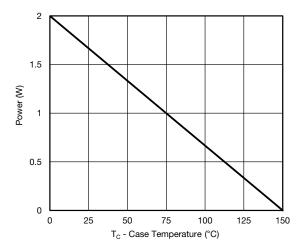

TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)


Source-Drain Diode Forward Voltage

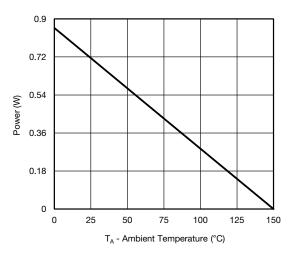

On-Resistance vs. Gate-to-Source Voltage

Threshold Voltage


Single Pulse Power, Junction-to-Ambient

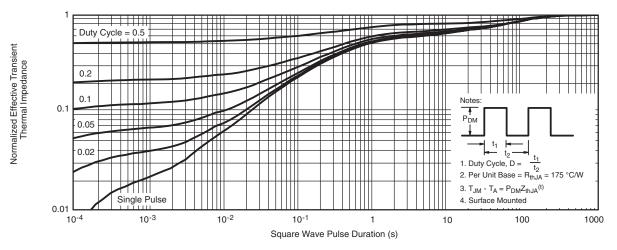


Safe Operating Area, Junction-to-Ambient

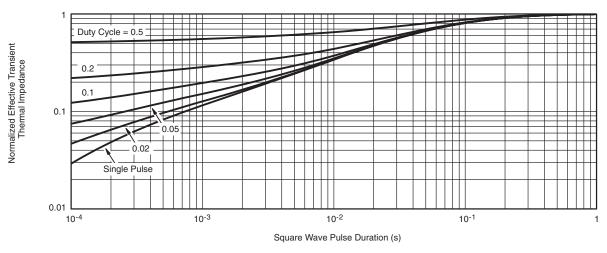

TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)

Current Derating*

Power Derating, Junction-to-Foot


Power, Junction-to-Ambient

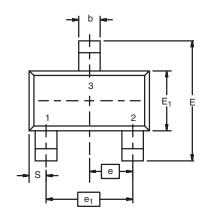
^{*} The power dissipation P_D is based on $T_{J(max.)}$ = 150 °C, using junction-to-case thermal resistance, and is more useful in settling the upper dissipation limit for cases where additional heatsinking is used. It is used to determine the current rating, when this rating falls below the package limit.

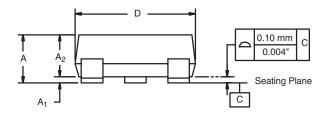

Vishay Siliconix

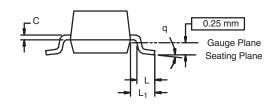
VISHAY

TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)

Normalized Thermal Transient Impedance, Junction-to-Ambient

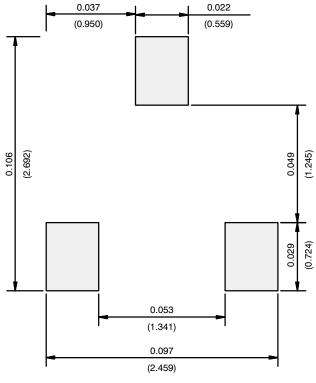



Normalized Thermal Transient Impedance, Junction-to-Foot


Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and reliability data, see www.vishay.com/ppg?64004.

Vishay Siliconix

SOT-23 (TO-236): 3-LEAD


Dim	MILLIMETERS		INCHES			
	Min	Max	Min	Max		
Α	0.89	1.12	0.035	0.044		
A ₁	0.01	0.10	0.0004	0.004		
A ₂	0.88	1.02	0.0346	0.040		
b	0.35	0.50	0.014	0.020		
С	0.085	0.18	0.003	0.007		
D	2.80	3.04	0.110	0.120		
E	2.10	2.64	0.083	0.104		
E ₁	1.20	1.40	0.047	0.055		
е	0.95 BSC		0.0374 Ref			
e ₁	1.90 BSC		0.0748 Ref			
L	0.40	0.60	0.016	0.024		
L ₁	0.64 Ref		0.025	0.025 Ref		
S	0.50 Ref		0.020 Ref			
q	3°	8°	3°	8°		
ECN: S-03946-Rev. K. 09-	Jul-01					

DWG: 5479

Document Number: 71196 www.vishay.com 09-Jul-01

RECOMMENDED MINIMUM PADS FOR SOT-23

Recommended Minimum Pads Dimensions in Inches/(mm)

Return to Index

APPLICATION NOTE

Legal Disclaimer Notice

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Hyperlinks included in this datasheet may direct users to third-party websites. These links are provided as a convenience and for informational purposes only. Inclusion of these hyperlinks does not constitute an endorsement or an approval by Vishay of any of the products, services or opinions of the corporation, organization or individual associated with the third-party website. Vishay disclaims any and all liability and bears no responsibility for the accuracy, legality or content of the third-party website or for that of subsequent links.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.