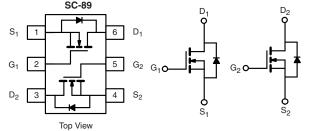


Automotive Dual N-Channel 60 V (D-S) 175 °C MOSFET


PRODUCT SUMMARY				
V _{DS} (V)	60			
$R_{DS(on)}(\Omega)$ at $V_{GS} = 10 \text{ V}$	1.4			
$R_{DS(on)}(\Omega)$ at $V_{GS} = 4.5 \text{ V}$	2.0			
I _D (A)	0.3			
Configuration	Dual			

FEATURES

- Halogen-free According to IEC 61249-2-21 **Definition**
- TrenchFET® Power MOSFET
- Compliant to RoHS Directive 2002/95/EC
- AEC-Q101 Qualified^c

Marking Code: E

N-Channel MOSFET N-Channel MOSFET

ORDERING INFORMATION	
Package	SC-89
Lead (Pb)-free and Halogen-free	SQ1026X-T1-GE3

ABSOLUTE MAXIMUM RATING	GS (T _A = 25 °C, unless	s otherwise noted	(b)		
PARAMETER		SYMBOL	LIMIT	UNIT	
Drain-Source Voltage		V_{DS}	60	.,	
Gate-Source Voltage		V _{GS}	± 20	V	
Continuous Drain Current	T _A = 25 °C	- I _D	0.3	A	
	T _A = 125 °C		0.2		
Continuous Source Current (Diode Conduction)		I _S	0.3	A	
Pulsed Drain Current ^a		I _{DM}	1.2		
Maximum Power Dissipation ^a	T _A = 25 °C	- P _D	0.300	w	
	T _A = 125 °C		0.100		
Operating Junction and Storage Temperature Range		T _J , T _{sta}	- 55 to + 175	°C	

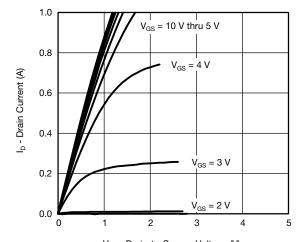
THERMAL RESISTANCE RATINGS					
PARAMETER		SYMBOL	LIMIT	UNIT	
Junction-to-Ambient	PCB Mountb	R _{thJA}	500	°C/W	

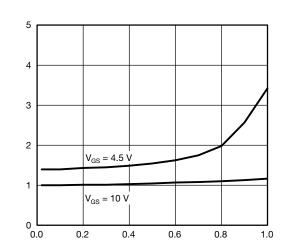
- a. Pulse test; pulse width \leq 300 µs, duty cycle \leq 2 %.
- b. When mounted on 1" square PCB (FR-4 material).
- c. Parametric verification ongoing.

PARAMETER	SYMBOL	TES	T CONDITIONS	MIN.	TYP.	MAX.	UNIT	
Static	1				L	·		
Drain-Source Breakdown Voltage	V _{DS}	$V_{GS} = 0 \text{ V}, I_D = 250 \mu\text{A}$		60	-	-	.,	
Gate-Source Threshold Voltage	V _{GS(th)}	V _{DS} =	= V _{GS} , I _D = 250 μA	1	1.5	2.5	V	
Gate-Source Leakage		$V_{DS} = 0 \text{ V}, V_{GS} = \pm 12 \text{ V}$		-	-	± 1	μΑ	
	I _{GSS}	V _{DS} =	$V_{DS} = 0 \text{ V}, V_{GS} = \pm 20 \text{ V}$		-	± 1	mA	
Zero Gate Voltage Drain Current		$V_{GS} = 0 V$	V _{DS} = 60 V	-	-	1.0		
	I _{DSS}	V _{GS} = 0 V	V _{DS} = 60 V, T _J = 125 °C	-	-	50	μΑ	
		V _{GS} = 0 V	V _{DS} = 60 V, T _J = 175 °C	-	-	150		
On-State Drain Current ^a	I _{D(on)}	V _{GS} = 10 V	V _{DS} ≥ 5 V	0.500	-	-	Α	
Drain-Source On-State Resistance ^a		V _{GS} = 10 V	I _D = 500 mA	-	1.1	1.4	Ω	
		V _{GS} = 10 V	$I_D = 500 \text{ mA}, T_J = 125 \text{ °C}$	-	-	2.41		
	R _{DS(on)}	V _{GS} = 10 V	I _D = 500 mA, T _J = 175 °C	-	-	3.04		
		V _{GS} = 4.5 V	I _D = 200 mA	-	1.5	2.0		
Forward Transconductanceb	9 _{fs}	V _{DS} = 10 V, I _D = 200 mA		-	0.200	-	S	
Dynamic ^b	•							
Input Capacitance	C _{iss}		/ _{GS} = 0 V V _{DS} = 25 V, f = 1 MHz	-	21	27	pF	
Output Capacitance	C _{oss}	$V_{GS} = 0 V$		-	6	8		
Reverse Transfer Capacitance	C _{rss}	1		-	4	5		
Total Gate Charge ^c	Qg		V _{DS} = 30 V, I _D = 250 mA	-	1.00	1.5	nC	
Gate-Source Charge ^c	Q _{gs}	V _{GS} = 10 V		-	0.16	-		
Gate-Drain Charge ^c	Q _{gd}			-	0.24	-		
Turn-On Delay Time ^c	t _{d(on)}	$V_{DD} = 30 \text{ V, } R_L = 30 \Omega$ $I_D \cong 1 \text{ A, } V_{GEN} = 10 \text{ V, } R_g = 6 \Omega$		-	5	8		
Rise Time	t _r			-	11	17	ns	
Turn-Off Delay Time ^c	t _{d(off)}	V _{DD}	$V_{DD} = 30 \text{ V}, R_{L} = 30 \Omega$		9	14		
Fall Time	t _f	$I_D \cong 1 \text{ A, } V_{GEN} = 10 \text{ V, } R_g = 1 \Omega$		-	10	15		
Diode Ratings and Characteristics ^b	•	•						
Pulsed Current ^a	I _{SM}			-	-	1.2	Α	
Forward Voltage	V _{SD}	I _F = 200 mA, V _{GS} = 0 V				1.2	V	

Notes

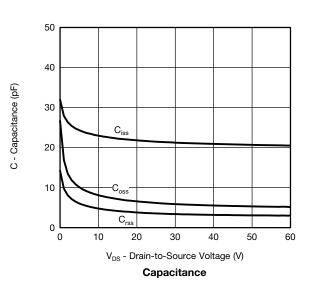
- a. Pulse test; pulse width $\leq 300~\mu s,$ duty cycle $\leq 2~\%.$
- b. Guaranteed by design, not subject to production testing.
- c. Independent of operating temperature.

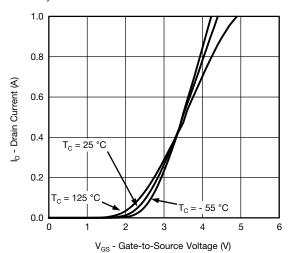

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

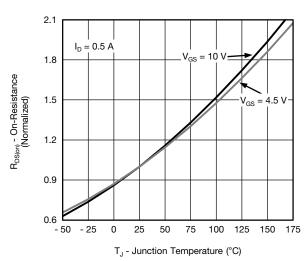


R_{DS(on)} - On-Resistance (Ω)

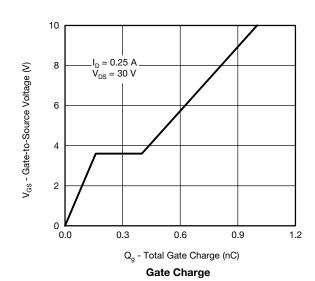
TYPICAL CHARACTERISTICS (T_C = 25 °C, unless otherwise noted)



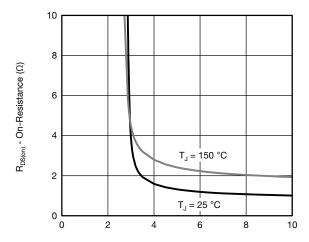

V_{DS} - Drain-to-Source Voltage (V) **Output Characteristics**


I_D - Drain Current (A)

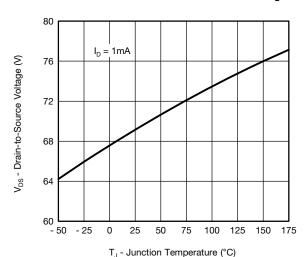
On-Resistance vs. Drain Current



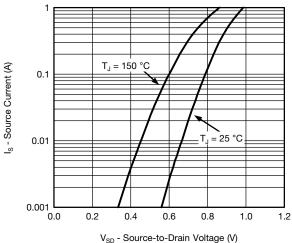
Transfer Characteristics



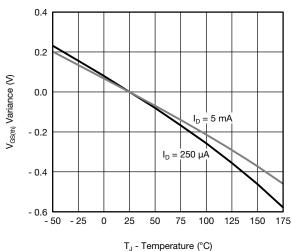
On-Resistance vs. Junction Temperature

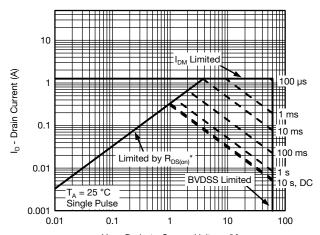


TYPICAL CHARACTERISTICS ($T_C = 25$ °C, unless otherwise noted)



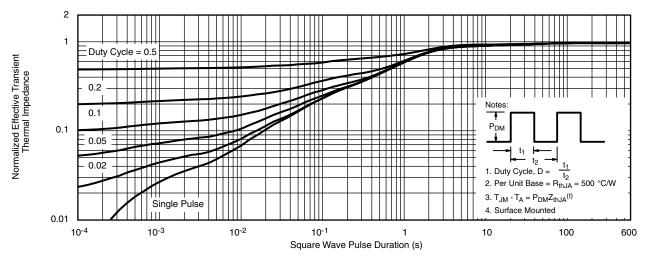
V_{GS} - Gate-to-Source Voltage (V)


On-Resistance vs. Gate-to-Source Voltage


Drain Source Breakdown vs. Junction Temperature

Source-Drain Diode Forward Voltage

Threshold Voltage



V_{DS} - Drain-to-Source Voltage (V) * V_{GS} > minimum V_{GS} at which $R_{DS(on)}$ is specified

Safe Operating Area

THERMAL RATINGS (T_A = 25 °C, unless otherwise noted)

Normalized Thermal Transient Impedance, Junction-to-Ambient

Note

The characteristics shown in the the graph Normalized Transient Thermal Impedance Junction to Ambient (25 °C) is given for general guidelines only to enable the user to get a "ball park" indication of part capabilities. The data are extracted from single pulse transient thermal impedance characteristics which are developed from empirical measurements. The latter is valid for the part mounted on printed circuit board - FR4, size 1" x 1" x 0.062", double sided with 2 oz. copper, 100 % on both sides. The part capabilities can widely vary depending on actual application parameters and operating conditions.

Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and reliability data, see www.vishay.com/ppg265450.

Legal Disclaimer Notice

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and/or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk and agree to fully indemnify and hold Vishay and its distributors harmless from and against any and all claims, liabilities, expenses and damages arising or resulting in connection with such use or sale, including attorneys fees, even if such claim alleges that Vishay or its distributor was negligent regarding the design or manufacture of the part. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

Document Number: 91000 www.vishay.com
Revision: 11-Mar-11 1