High Voltage 4Ω Quad SPST CMOS Analog Switch

DESCRIPTION

The DG454 series has four independently selectable high voltage (44 V) SPST switches, each with a typical on resistance of 4Ω and a typical flatness of 0.2Ω, ideal parameters for low distortion audio signal switching.
The DG454 (NC) and DG455 (NO) are identical except for the digital logic control input, which is inverted as shown in the Truth Table. The DG456 has two normally closed and two normally open switches.
These are high voltage switches that are fully specified with dual supplies at $\pm 5 \mathrm{~V}$ and $\pm 15 \mathrm{~V}$ and a single supply of 12 V .
Fast switching speeds coupled with high signal bandwidth makes these parts suitable for video switching applications.
All digital inputs have 0.8 V and 2.4 V logic thresholds ensuring low voltage TTL/CMOS compatibility. Each switch conducts equally well in both directions when on and can handle an input signal range that extends to the supply voltage rails.
The DG454 DG455 and DG456 are pin compatible with the DG411, DG412 and DG413, except they require no V_{L} supply.

FEATURES

- Low on-resistance (4 Ω typical)
- On-resistance flatness (0.2 Ω typical)
- 100 mA continuous current
- 44 V supply maximum rating
- $\pm 15 \mathrm{~V}$ analog signal range
- Fully specified at supply voltages of $\pm 5 \mathrm{~V}$, 12 V and $\pm 15 \mathrm{~V}$
- No V_{L} required
- Fast switching speed:
- $\mathrm{t}_{\mathrm{on}} 80 \mathrm{~ns}$
- $\mathrm{t}_{\text {off }} 60 \mathrm{~ns}$
- TTL/CMOS compatible
- ESD protection 2 kV
- Pin compatible with DG411, DG412, and DG413, except no V_{L} required
- Material categorization: For definitions of compliance please see www.vishay.com/doc?99912

APPLICATIONS

- Audio and video signal switching
- Precision automatic test equipment
- Precision data acquisition
- Relay replacement
- Communications systems
- Automotive and avionics applications
- Sample and hold systems

FUNCTIONAL BLOCK DIAGRAM AND PIN CONFIGURATION

TRUTH TABLE		
Logic	DG454	DG455
0	On	Off
1	Off	On

Top View

TRUTH TABLE		
Logic	$\mathbf{s W}_{1}, \mathbf{s W}_{\mathbf{4}}$	$\mathbf{S W}_{2}, \mathbf{s W}_{\mathbf{3}}$
0	Off	On
1	On	Off

DG454, DG455, DG456

Vishay Siliconix

ORDERING INFORMATION		
Temp. Range	Package	Part Number
DG454, DG455, DG456		
$-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}^{\mathrm{a}}$		DG454EQ-T1-E3
		DG455EQ-T1-E3
	16 Pin Narrow SOIC	DG456EQ-T1-E3
		DG454EY-T1-E3
		DG455EY-T1-E3
		DG456EY-T1-E3

Notes:

a. $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ datasheet limits apply.

ABSOLUTE MAXIMUM RATINGS ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted)			
Parameter		Limit	Unit
$\mathrm{V}+$ to V -		44	V
GND to V-		25	
Digital Inputs ${ }^{\text {a }}$, $\mathrm{V}_{\mathrm{S}}, \mathrm{V}_{\mathrm{D}}$		$(\mathrm{V}-)-2 \text { to }(\mathrm{V}+)+2$ or 30 mA , whichever occurs first	
Continuous Current (D, S only)		100	mA
Peak Current, S or D (Pulsed 1 ms, 10 \% Duty Cycle)		300	
Storage Temperature		- 65 to 150	${ }^{\circ} \mathrm{C}$
Power Dissipation (Package) ${ }^{\text {b }}$	16 Pin TSSOP ${ }^{\text {c }}$	450	mW
	16 Pin Narrow SOIC ${ }^{\text {d }}$	600	
Thermal Resistance (Package) ${ }^{\text {b }}$	16 Pin TSSOP	178	${ }^{\circ} \mathrm{C} / \mathrm{W}$
	16 Pin Narrow SOIC	125	
ESD (HBM)		2	kV

Notes:
a. Signals on S_{x}, D_{x}, or $I N_{x}$ exceeding $\mathrm{V}+$ or V - will be clamped by internal diodes. Limit forward diode current to maximum current ratings.
b. All leads welded or soldered to PC board.
c. Derate $5.6 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $70^{\circ} \mathrm{C}$.
d. Derate $8 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $75^{\circ} \mathrm{C}$.

SPECIFICATIONS FOR DUAL SUPPLIES									
Parameter	Symbol	Test Conditions Unless Specified$\begin{gathered} \mathrm{V}+=15 \mathrm{~V}, \mathrm{~V}-=-15 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{IN}}=2.4 \mathrm{~V}, 0.8 \mathrm{~V}^{\mathrm{a}} \end{gathered}$	Temp. ${ }^{\text {b }}$	Typ. ${ }^{\text {c }}$	$-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$		$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$		Unit
					Min. ${ }^{\text {d }}$	Max. ${ }^{\text {d }}$	Min. ${ }^{\text {d }}$	Max. ${ }^{\text {d }}$	
Analog Switch									
Analog Signal Range ${ }^{\text {e }}$	$\mathrm{V}_{\text {ANALOG }}$		Full		-15	15	-15	15	V
On-Resistance	R_{ON}	$\mathrm{I}_{\mathrm{S}}=-10 \mathrm{~mA}, \mathrm{~V}_{\mathrm{D}}=-10 \mathrm{~V}$ to +10 V	Room Full	3.8		$\begin{aligned} & 5.3 \\ & 8.3 \\ & \hline \end{aligned}$		$\begin{aligned} & 5.3 \\ & 7.3 \end{aligned}$	Ω
On-Resistance Match	$\Delta \mathrm{R}_{\mathrm{ON}}$	$\mathrm{I}_{\mathrm{S}}=-10 \mathrm{~mA}, \mathrm{~V}_{\mathrm{D}}= \pm 10 \mathrm{~V}$	Room Full	0.12		$\begin{gathered} 0.5 \\ 1 \\ \hline \end{gathered}$		$\begin{aligned} & 0.5 \\ & 0.5 \\ & \hline \end{aligned}$	
On-Resistance Flatness	RFLatness	$\mathrm{I}_{\mathrm{S}}=-10 \mathrm{~mA}, \mathrm{~V}_{\mathrm{D}}=-5 \mathrm{~V}, 0 \mathrm{~V},+5 \mathrm{~V}$	Room Full	0.25		$\begin{aligned} & \hline 0.5 \\ & 0.5 \\ & \hline \end{aligned}$		$\begin{aligned} & 0.5 \\ & 0.5 \\ & \hline \end{aligned}$	
Switch Off Leakage Current	${ }^{\text {S (off) }}$	$V_{D}= \pm 10 \mathrm{~V}, V_{S}=10 \mathrm{~V}$	Room Full	± 0.1	$\begin{aligned} & \hline-0.5 \\ & -20 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.5 \\ & 20 \\ & \hline \end{aligned}$	$\begin{array}{r} \hline-0.5 \\ -2.5 \\ \hline \end{array}$	$\begin{aligned} & \hline 0.5 \\ & 2.5 \\ & \hline \end{aligned}$	nA
	$\mathrm{I}_{\mathrm{D} \text { (off) }}$		Room Full	± 0.1	$\begin{array}{r} \hline-0.5 \\ -20 \\ \hline \end{array}$	$\begin{aligned} & 0.5 \\ & 20 \\ & \hline \end{aligned}$	$\begin{array}{r} -0.5 \\ -2.5 \\ \hline \end{array}$	$\begin{aligned} & 0.5 \\ & 2.5 \\ & \hline \end{aligned}$	
Channel On Leakage Current	$I_{\text {don }}$	$\mathrm{V}_{\mathrm{S}}=\mathrm{V}_{\mathrm{D}}= \pm 10 \mathrm{~V}$	Room Full	± 0.1	$\begin{gathered} -1 \\ -40 \end{gathered}$	$\begin{gathered} \hline 1 \\ 40 \end{gathered}$	$\begin{aligned} & \hline-1 \\ & -5 \end{aligned}$	$\begin{aligned} & \hline 1 \\ & 5 \\ & \hline \end{aligned}$	

SPECIFICATIONS FOR DUAL SUPPLIES									
Parameter	Symbol	Test Conditions Unless Specified$\begin{gathered} \mathrm{V}+=15 \mathrm{~V}, \dot{\mathrm{~V}}-=-15 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{IN}}=2.4 \mathrm{~V}, 0.8 \mathrm{~V}^{\mathrm{a}} \end{gathered}$	Temp. ${ }^{\text {b }}$	Typ. ${ }^{\text {c }}$	$-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$		$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$		Unit
					Min. ${ }^{\text {d }}$	Max. ${ }^{\text {d }}$	Min. ${ }^{\text {d }}$	Max. ${ }^{\text {d }}$	
Digital Control									
Input Current, $\mathrm{V}_{\text {IN }}$ Low		$\mathrm{V}_{\text {IN }}$ Under Test $=0.8 \mathrm{~V}$	Full	0.005	- 0.5	0.5	-0.5	0.5	$\mu \mathrm{A}$
Input Current, $\mathrm{V}_{\text {IN }}$ High	I_{H}	$\mathrm{V}_{\text {IN }}$ Under Test $=2.4 \mathrm{~V}$	Full	0.005	-0.5	0.5	-0.5	0.5	
Input Capacitance ${ }^{\text {e }}$	$\mathrm{C}_{\text {IN }}$	$\mathrm{f}=1 \mathrm{MHz}$	Room	7					pF
Dynamic Characteristics									
Turn-On Time	t_{ON}	$\begin{gathered} R_{L}=300 \Omega, C_{L}=35 \mathrm{pF} \\ V_{S}= \pm 10 \mathrm{~V}, \text { See Figure } 2 \end{gathered}$	Room Full	88		$\begin{aligned} & 118 \\ & 160 \\ & \hline \end{aligned}$		$\begin{aligned} & 118 \\ & 144 \\ & \hline \end{aligned}$	ns
Turn-Off Time	$t_{\text {OFF }}$		Room Full	69		$\begin{gathered} \hline 97 \\ 120 \end{gathered}$		$\begin{gathered} \hline 97 \\ 112 \end{gathered}$	
Break-Before-Make Time Delay	t_{D}	$\begin{aligned} & \text { DG456 only, } \mathrm{V}_{\mathrm{S}}=10 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} \end{aligned}$	Room	18					
Charge Injection ${ }^{\text {e }}$	Q	$\mathrm{V}_{\mathrm{g}}=0 \mathrm{~V}, \mathrm{R}_{\mathrm{g}}=0 \Omega, \mathrm{C}_{\mathrm{L}}=1 \mathrm{nF}$	Room	22					pC
Off Isolation ${ }^{\text {e }}$	OIRR	$\begin{aligned} & R_{L}= 50 \Omega, C_{L}=5 p F \\ & f=1 M H z \end{aligned}$	Room	-60					dB
Channel-to-Channel Crosstalk ${ }^{\text {e }}$	$\mathrm{X}_{\text {TALK }}$		Room	-85					
Source Off Capacitance ${ }^{\text {e }}$	$\mathrm{C}_{\text {S(off) }}$	$\mathrm{f}=1 \mathrm{MHz}$	Room	31					pF
Drain Off Capacitance ${ }^{\text {e }}$	$\mathrm{C}_{\mathrm{D} \text { (off) }}$		Room	34					
Channel On Capacitance ${ }^{e}$	$\mathrm{C}_{\mathrm{D} \text { (on) }}$		Room	103					
Total Harmonic Distortione	THD	$\begin{gathered} \text { Signal =5 } \mathrm{V}_{\mathrm{RMS}}, 20 \mathrm{~Hz} \text { to } 20 \mathrm{kHz}, \\ \mathrm{R}_{\mathrm{L}}=600 \Omega \end{gathered}$	Room	0.04					\%
Power Supplies									
Power Supply Current	$1+$	$\begin{gathered} \mathrm{V}_{+}=16.5 \mathrm{~V}, \mathrm{~V}-=-16.5 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{IN}}=0 \text { or } 5 \mathrm{~V} \end{gathered}$	Room Full	25		$\begin{aligned} & \hline 100 \\ & 100 \\ & \hline \end{aligned}$		$\begin{aligned} & \hline 100 \\ & 100 \end{aligned}$	$\mu \mathrm{A}$
Negative Supply Current	I-		$\begin{aligned} & \text { Room } \\ & \text { Full } \end{aligned}$	- 0.001	$\begin{gathered} \hline-0.5 \\ -5 \end{gathered}$		$\begin{gathered} \hline-0.5 \\ -5 \end{gathered}$		
Ground Current	$\mathrm{I}_{\text {GND }}$		Room Full	-25	$\begin{aligned} & -100 \\ & -100 \end{aligned}$		$\begin{aligned} & -100 \\ & -100 \end{aligned}$		

SPECIFICATIONS FOR DUAL SUPPLIES

Parameter	Symbol	Test Conditions Unless Specified$\begin{aligned} & \mathrm{V}_{+}=5 \mathrm{~V}, \mathrm{~V}-=-5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IN}}=2.4 \mathrm{~V}, 0.8 \mathrm{~V}^{\mathrm{a}} \end{aligned}$	Temp. ${ }^{\text {b }}$	Typ. ${ }^{\text {c }}$	$-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$		$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$		Unit
					Min. ${ }^{\text {d }}$	Max. ${ }^{\text {d }}$	Min. ${ }^{\text {d }}$	Max. ${ }^{\text {d }}$	
Analog Switch									
Analog Signal Range ${ }^{\text {e }}$	$\mathrm{V}_{\text {ANALOG }}$		Full		- 5	5	- 5	5	V
On-Resistance	R_{ON}	$\begin{gathered} \mathrm{V}+=+5 \mathrm{~V}, \mathrm{~V}-=-5 \mathrm{~V} \\ \mathrm{I}_{\mathrm{S}}=-10 \mathrm{~mA}, \mathrm{~V}_{\mathrm{D}}=-3.5 \mathrm{~V} \text { to }+3.5 \mathrm{~V} \end{gathered}$	Room Full	3.8		$\begin{aligned} & 11 \\ & 15 \end{aligned}$		$\begin{aligned} & 11 \\ & 12 \end{aligned}$	
On-Resistance Match	$\Delta \mathrm{R}_{\mathrm{ON}}$	$\begin{gathered} \mathrm{V}+=+5 \mathrm{~V}, \mathrm{~V}-=-5 \mathrm{~V} \\ \mathrm{I}_{\mathrm{S}}=-10 \mathrm{~mA}, \mathrm{~V}_{\mathrm{D}}= \pm 3.5 \mathrm{~V} \end{gathered}$	Room Full	0.13		0.5 1		$\begin{aligned} & 0.5 \\ & 0.5 \end{aligned}$	
Dynamic Characteristics									
Turn-On Time ${ }^{\text {e }}$	t_{ON}	$\begin{aligned} & R_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} \\ & \mathrm{~V}_{\mathrm{S}}=3 \mathrm{~V}, \text { See Figure } 2 \end{aligned}$	Room Full	170		$\begin{aligned} & 200 \\ & 296 \\ & \hline \end{aligned}$		$\begin{aligned} & 200 \\ & 256 \\ & \hline \end{aligned}$	ns
Turn-Off Time ${ }^{\text {e }}$	$\mathrm{t}_{\text {OFF }}$		Room Full	66		$\begin{gathered} 96 \\ 124 \end{gathered}$		$\begin{gathered} 96 \\ 113 \end{gathered}$	
Break-Before-Make ${ }^{e}$ Time Delay	t_{D}	$\begin{gathered} \text { DG456 only, } \mathrm{V}_{\mathrm{S}}=3 \mathrm{~V} \\ \mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} \end{gathered}$	Room	98					
Charge Injection ${ }^{\text {e }}$	Q	$\mathrm{V}_{\mathrm{g}}=0 \mathrm{~V}, \mathrm{R}_{\mathrm{g}}=0 \Omega, \mathrm{C}_{\mathrm{L}}=1 \mathrm{nF}$	Room	8					pC

Vishay Siliconix

SPECIFICATIONS FOR DUAL SUPPLIES									
Parameter	Symbol	Test Conditions Unless Specified $\mathrm{V}+=5 \mathrm{~V}, \mathrm{~V}-=-5 \mathrm{~V}$ $\mathrm{V}_{\mathrm{IN}}=2.4 \mathrm{~V}, 0.8 \mathrm{~V}^{\mathrm{a}}$	Temp. ${ }^{\text {b }}$	Typ. ${ }^{\text {c }}$	$-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$		$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$		Unit
					Min. ${ }^{\text {d }}$	Max. ${ }^{\text {d }}$	Min. ${ }^{\text {d }}$	Max. ${ }^{\text {d }}$	
Power Supplies									
Power Supply Current	$1+$	$\mathrm{V}_{\text {IN }}=0$ or 5 V	Room Full	14		$\begin{aligned} & \hline 100 \\ & 100 \end{aligned}$		$\begin{aligned} & \hline 100 \\ & 100 \end{aligned}$	$\mu \mathrm{A}$
Negative Supply Current	I-		$\begin{gathered} \text { Room } \\ \text { Full } \end{gathered}$	-0.001	$\begin{gathered} -0.5 \\ -5 \end{gathered}$		$\begin{gathered} -0.5 \\ -5 \end{gathered}$		
Ground Current	$\mathrm{I}_{\text {GND }}$		Room Full	- 14	$\begin{array}{r} -100 \\ -100 \\ \hline \end{array}$		$\begin{aligned} & -100 \\ & -100 \end{aligned}$		

SPECIFICATIONS FOR UNIPOLAR SUPPLIES									
Parameter	Symbol	Test Conditions Unless Specified $\mathrm{V}+=12 \mathrm{~V}, \mathrm{~V}-=0 \mathrm{~V}$ $\mathrm{V}_{\mathrm{IN}}=2.4 \mathrm{~V}, 0.8 \mathrm{~V}^{\mathrm{a}}$	Temp. ${ }^{\text {b }}$	Typ. ${ }^{\text {c }}$	$-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$		$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$		Unit
					Min. ${ }^{\text {d }}$	Max. ${ }^{\text {d }}$	Min. ${ }^{\text {d }}$	Max. ${ }^{\text {d }}$	
Analog Switch									
Analog Signal Range ${ }^{\text {e }}$	$\mathrm{V}_{\text {ANALOG }}$		Full			12		12	V
On-Resistance	R_{ON}	$\mathrm{I}_{\mathrm{S}}=-10 \mathrm{~mA}, \mathrm{~V}_{\mathrm{D}}=0 \mathrm{~V}$ to +10 V	Room Full	5.5		$\begin{gathered} \hline 8.1 \\ 12.4 \\ \hline \end{gathered}$		$\begin{gathered} \hline 8.1 \\ 10.4 \end{gathered}$	
On-Resistance Match	$\Delta \mathrm{R}_{\mathrm{ON}}$	$\mathrm{I}_{\mathrm{S}}=-10 \mathrm{~mA}, \mathrm{~V}_{\mathrm{D}}=+10 \mathrm{~V}$	Room Full	0.14		$\begin{gathered} 0.5 \\ 1 \end{gathered}$		$\begin{aligned} & \hline 0.5 \\ & 0.5 \end{aligned}$	Ω
On-Resistance Flatness	R flatness	$\begin{gathered} I_{S}=-10 \mathrm{~mA}, \\ \mathrm{~V}_{\mathrm{D}}=0 \mathrm{~V},+5 \mathrm{~V},+10 \mathrm{~V} \end{gathered}$	Room Full	0.94		1.5		$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	
Dynamic Characteristics									
Turn-On Time	t_{ON}	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} \\ & \mathrm{~V}_{\mathrm{S}}=8 \mathrm{~V} \text {, See Figure } 2 \end{aligned}$	Room Full	132		$\begin{aligned} & 162 \\ & 238 \end{aligned}$		$\begin{aligned} & 162 \\ & 210 \end{aligned}$	
Turn-Off Time	$t_{\text {OFF }}$		Room Full	61		$\begin{gathered} 91 \\ 117 \end{gathered}$		$\begin{gathered} 91 \\ 105 \end{gathered}$	ns
Break-Before-Make Time Delay	$t_{\text {D }}$	$\begin{gathered} \text { DG456 only, } \mathrm{V}_{\mathrm{S}}=8 \mathrm{~V} \\ \mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} \end{gathered}$	Room	70					
Charge Injection ${ }^{\text {e }}$	Q	$\mathrm{V}_{\mathrm{g}}=0 \mathrm{~V}, \mathrm{R}_{\mathrm{g}}=0 \Omega, \mathrm{C}_{\mathrm{L}}=1 \mathrm{nF}$	Room	1					pC
Power Supplies									
Power Supply Current	I+	$\begin{aligned} & \mathrm{V}+=13.5 \mathrm{~V}, \mathrm{~V}-=0 \mathrm{~V} \\ & \mathrm{~V}_{\text {IN }}=0 \text { or } 5 \mathrm{~V} \end{aligned}$	Room Full	25		$\begin{aligned} & \hline 100 \\ & 100 \end{aligned}$		$\begin{aligned} & \hline 100 \\ & 100 \end{aligned}$	$\mu \mathrm{A}$
Negative Supply Current	I-		Room Full	-0.001	$\begin{gathered} -0.5 \\ -5 \end{gathered}$		$\begin{gathered} -0.5 \\ -5 \end{gathered}$		
Ground Current	$I_{\text {GND }}$		Room Full	-25	$\begin{aligned} & -100 \\ & -100 \end{aligned}$		$\begin{aligned} & -100 \\ & -100 \end{aligned}$		

Notes:

a. $\mathrm{V}_{\mathrm{IN}}=$ input voltage to perform proper function.
b. Room $=25^{\circ} \mathrm{C}$, Full = as determined by the operating temperature suffix.
c. Typical values are for DESIGN AID ONLY, not guaranteed nor subject to production testing.
d. The algebraic convention whereby the most negative value is a minimum and the most positive a maximum, is used in this data sheet.
e. Guaranteed by design, not subject to production test.

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

TYPICAL CHARACTERISTICS ($25^{\circ} \mathrm{C}$, unless otherwise noted)

TYPICAL CHARACTERISTICS $\left(25^{\circ} \mathrm{C}\right.$, unless otherwise noted)

Charge Injection vs. Analog Voltage

Switching Time vs. Dual Supply Voltage

Switching Time vs. Single Supply Voltage

Switching Time vs. Temperature and Dual Supply Voltage

Switching Time vs. Temperature and Single Supply Voltage

Supply Current vs. Input Switching Frequency

TYPICAL CHARACTERISTICS ($25^{\circ} \mathrm{C}$, unless otherwise noted)

Switching Threshold vs. Supply Voltage

Insertion Loss, Off-Isolation, Crosstalk
vs. Frequency

TEST CIRCUITS

Note: Logic input waveform is inverted for switches that have the opposite logic sense control

Figure 1. Switching Time

Figure 2. Break-Before-Make (DG456)

TEST CIRCUITS

Figure 3. Charge Injection

Figure 4. Crosstalk

Figure 5. Off-Isolation

Figure 6. Source/Drain Capacitances

Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon
Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and reliability data, see www.vishay.com/ppg? 74473.

Dim	MILLIMETERS		INCHES	
	Min	Max	Min	Max
\mathbf{A}	1.35	1.75	0.053	0.069
$\mathbf{A}_{\mathbf{1}}$	0.10	0.20	0.004	0.008
\mathbf{B}	0.38	0.51	0.015	0.020
C	0.18	0.23	0.007	0.009
\mathbf{D}	9.80	10.00	0.385	0.393
E	3.80	4.00	0.149	0.157
\mathbf{e}	1.27 BSC	0.050 BSC		
\mathbf{H}	5.80	6.20	0.228	0.244
L	0.50	0.93	0.020	0.037
\varnothing	0°	8°	0°	8°
ECN: S-03946-Rev. F, 09-Jul-01 DWG: 5300				

TSSOP: 16-LEAD

Symbols	DIMENSIONS IN MILLIMETERS		
	Min	Nom	Max
A	-	1.10	1.20
A1	0.05	0.10	0.15
A2	-	1.00	1.05
B	0.22	0.28	0.38
C	-	0.127	-
D	4.90	5.00	5.10
E	6.10	6.40	6.70
E1	4.30	4.40	4.50
e	-	0.65	-
L	0.50	0.60	0.70
L1	0.90	1.00	1.10
y	-	-	0.10
11	0°	3°	6°
ECN: S-61920-Rev. D, 23-Oct-06			
DWG: 5624			

www.vishay.com

RECOMMENDED MINIMUM PAD FOR TSSOP-16

Recommended Minimum Pads Dimensions in inches (mm)

Vishay Siliconix

RECOMMENDED MINIMUM PADS FOR SO-16

Recommended Minimum Pads
Dimensions in Inches/(mm)

Return to Index

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

