

www.vishay.com

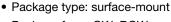
Vishay Semiconductors

AUTOMOTIVE GRADE

HALOGEN

FREE **GREEN**

High Speed Infrared Emitting Diodes, 940 nm, **Surface Emitter Technology**

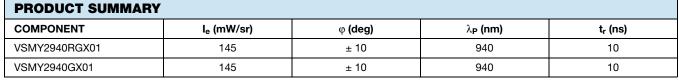

DESCRIPTION

As part of the SurfLight portfolio, the VSMY2940 series are infrared, 940 nm emitting diodes based on GaAlAs surface emitter chip technology with extreme high radiant intensities, high optical power and high speed, molded in clear, untinted plastic packages (with lens) for surface mounting (SMD).

APPLICATIONS

- · Miniature light barrier
- Photointerrupters
- · Optical switch
- Emitter source for proximity sensors

FEATURES

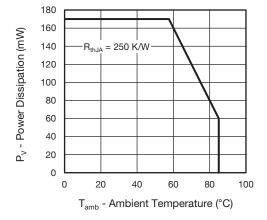


• Dimensions (L x W x H in mm): 2.3 x 2.3 x 2.8

Peak wavelength: λ_p = 940 nm

- AEC-Q101 qualified
- High radiant power
- · Very high radiant intensity
- Angle of half intensity: $\varphi = \pm 10^{\circ}$
- · Suitable for high pulse current operation
- · Terminal configurations: gullwing or reverse gullwing
- Package matches with detector VEMD2000X01 series
- Floor life: 4 weeks, MSL 2a, according to J-STD-020
- Material categorization: for definitions of compliance please see www.vishay.com/doc?99912

Note


Test conditions see table "Basic Characteristics"

ORDERING INFORMATION					
ORDERING CODE	PACKAGING	REMARKS	PACKAGE FORM		
VSMY2940RGX01	Tape and reel	MOQ: 6000 pcs, 6000 pcs/reel	Reverse gullwing		
VSMY2940GX01	Tape and reel	MOQ: 6000 pcs, 6000 pcs/reel	Gullwing		

· MOQ: minimum order quantity

ABSOLUTE MAXIMUM RATINGS (T _{amb} = 25 °C, unless otherwise specified)				
PARAMETER	TEST CONDITION	SYMBOL	VALUE	UNIT
Reverse voltage		V _R	5	V
Forward current		I _F	100	mA
Peak forward current	$t_p/T = 0.5, t_p = 100 \mu s$	I _{FM}	200	mA
Surge forward current	t _p = 100 μs	I _{FSM}	1	Α
Power dissipation		P _V	170	mW
Junction temperature		Tj	100	°C
Operating temperature range		T _{amb}	-40 to +85	°C
Storage temperature range		T _{stg}	-40 to +100	°C
Soldering temperature	According to Fig. 10, J-STD-020	T _{sd}	260	°C
Thermal resistance junction-to-ambient	J-STD-051, soldered on PCB	R _{thJA}	250	K/W

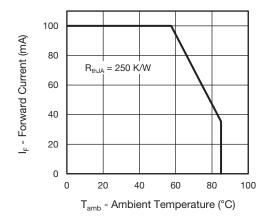


Fig. 1 - Power Dissipation Limit vs. Ambient Temperature

Fig. 2 - Forward Current Limit vs. Ambient Temperature

BASIC CHARACTERISTICS (T _{amb} = 25 °C, unless otherwise specified)						
PARAMETER	TEST CONDITION	SYMBOL	MIN.	TYP.	MAX.	UNIT
Familiard valtage	$I_F = 100 \text{ mA}, t_p = 20 \text{ ms}$	V _F	-	1.4	1.8	V
Forward voltage	$I_F = 1 \text{ A}, t_p = 100 \ \mu\text{s}$	V_{F}	-	2.5	-	V
Temperature coefficient of V _F	I _F = 100 mA	TK _{VF}	-	-0.7	-	mV/K
Reverse current		I _R	Not designed for reverse operation		μΑ	
Junction capacitance	$V_R = 0 \text{ V, f} = 1 \text{ MHz, E} = 0 \text{ mW/cm}^2$	CJ	-	55	-	pF
Radiant intensity	$I_F = 100 \text{ mA}, t_p = 20 \text{ ms}$	I _e	75	145	215	mW/sr
nation intensity	$I_F = 1 \text{ A}, t_p = 100 \ \mu\text{s}$	l _e	-	1000	-	mW/sr
Radiant power	$I_F = 100 \text{ mA}, t_p = 20 \text{ ms}$	φ _e	-	55	-	mW
Temperature coefficient of radiant power	I _F = 100 mA	TKφ _e	-	-0.2	-	%/K
Angle of half intensity		φ	-	± 10	-	deg
Peak wavelength	I _F = 100 mA	λ_{p}	920	940	960	nm
Spectral bandwidth	I _F = 100 mA	Δλ	-	50	-	nm
Temperature coefficient of λ_p	I _F = 100 mA	TKλ _p	-	0.25	-	nm/K
Rise time	I _F = 100 mA, 10 % to 90 %	t _r	1	10	-	ns
Fall time	I _F = 100 mA, 10 % to 90 %	t _f	-	10	-	ns

BASIC CHARACTERISTICS (T_{amb} = 25 °C, unless otherwise specified)

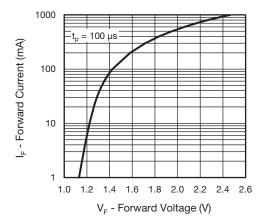


Fig. 3 - Forward Current vs. Forward Voltage

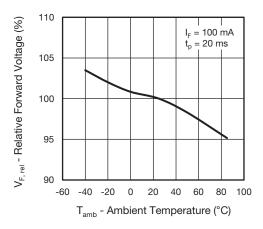


Fig. 4 - Relative Forward Voltage vs. Ambient Temperature

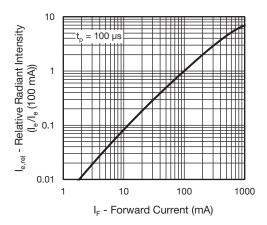


Fig. 5 - Relative Radiant Intensity vs. Forward Current

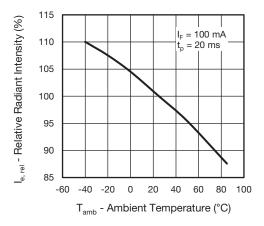


Fig. 6 - Relative Radiant Intensity vs. Ambient Temperature

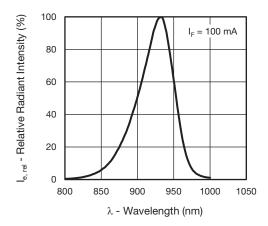


Fig. 7 - Relative Radiant Intensity vs. Wavelength

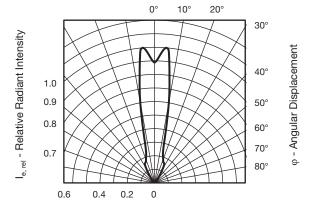


Fig. 8 - Relative Radiant Intensity vs. Angular Displacement

SOLDER PROFILE

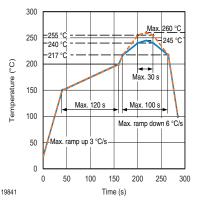


Fig. 9 - Lead (Pb)-free Reflow Solder Profile According to J-STD-020

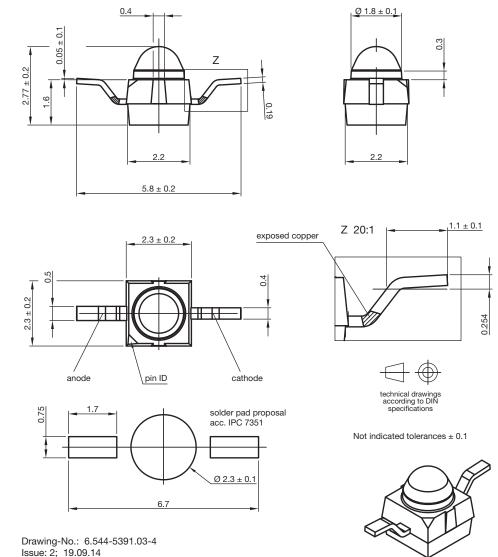
DRYPACK

Devices are packed in moisture barrier bags (MBB) to prevent the products from moisture absorption during transportation and storage. Each bag contains a desiccant.

FLOOR LIFE

Floor life (time between soldering and removing from MBB) must not exceed the time indicated on MBB label:

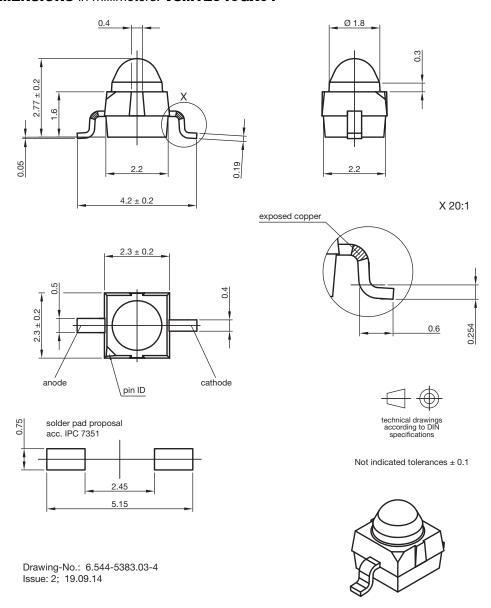
Floor life: 4 weeks


Conditions: T_{amb} < 30 °C, RH < 60 %

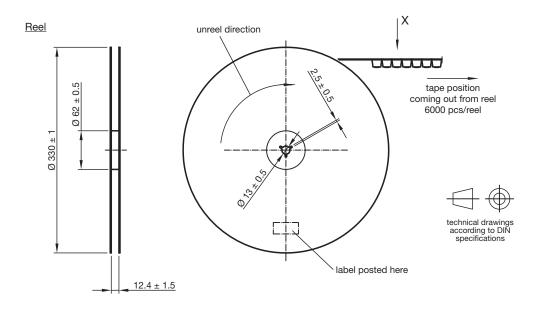
Moisture sensitivity level 2a, according to J-STD-020.

DRYING

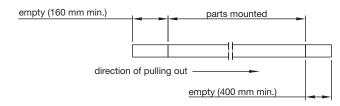
In case of moisture absorption devices should be baked before soldering. Conditions see J-STD-020 or label. Devices taped on reel dry using recommended conditions 192 h at 40 $^{\circ}$ C (+ 5 $^{\circ}$ C), RH < 5 $^{\circ}$ M.


PACKAGE DIMENISONS in millimeters: VSMY2940RGX01

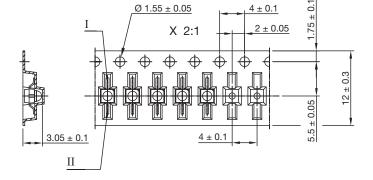
Rev. 1.0, 08-Nov-17 **4** Document Number: 84583


ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishav.com/doc?91000

PACKAGE DIMENSIONS in millimeters: VSMY2940GX01

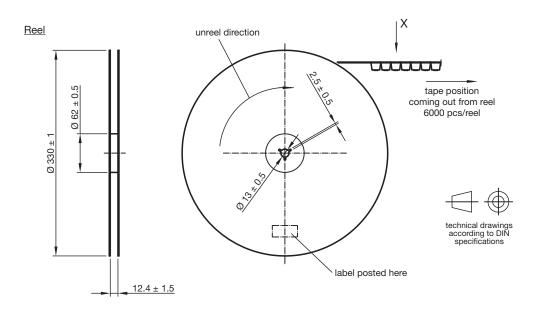


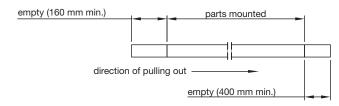
TAPING AND REEL DIMENSIONS in millimeters: VSMY2940RGX01



Leader and trailer tape

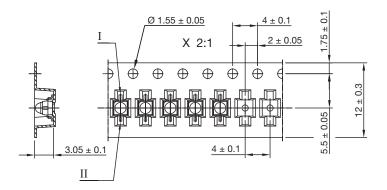
Terminal position in tape


Device	Lead I	Lead II
VEMT2000	Collector	Emitter
VEMT2500	Collector	Emilie
VEMD2000		Anode
VEMD2500		
VSMB2000	Cathode	
VSMG2000		
VSMF2890RG		
VSMY2850RG	Anode	Cathode
VSMY2940RG	Anoue	Califode


Drawing-No.: 9.800-5100.01-4

Issue: 4; 19.09.14

TAPING AND REEL DIMENSIONS in millimeters: VSMY2940GX01



Leader and trailer tape

Terminal position in tape

Device	Lead I	Lead II
VSMB2020		
VSMG2020		
VEMD2020	Cathode	Anode
VEMD2520		
VSMF2890G		
VEMT2020	Collector	Emitter
VEMT2520	Collector	Emitter
VSMY2850G	Anode	Cathode
VSMY2940G	Anoue	Califode
		,

Drawing-No.: 9.800-5091.01-4

Issue: 5; 19.09.14

Legal Disclaimer Notice

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Hyperlinks included in this datasheet may direct users to third-party websites. These links are provided as a convenience and for informational purposes only. Inclusion of these hyperlinks does not constitute an endorsement or an approval by Vishay of any of the products, services or opinions of the corporation, organization or individual associated with the third-party website. Vishay disclaims any and all liability and bears no responsibility for the accuracy, legality or content of the third-party website or for that of subsequent links.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.