VS-ST733CL Series

Vishay Semiconductors

Inverter Grade Thyristors (Hockey PUK Version), 940 A

B-PUK (TO-200AC)

PRIMARY CHARACTERISTICS						
Package	B-PUK (TO-200AC)					
Circuit configuration	Single SCR					
I _{T(AV)}	940 A					
V _{DRM} /V _{RRM}	400 V, 800 V					
V _{TM}	1.63 V					
I _{TSM} at 50 Hz	20 000 A					
I _{TSM} at 60 Hz	20 950 A					
I _{GT}	200 mA					
T _C /T _{hs}	55 °C					

FEATURES

- Metal case with ceramic insulator
- All diffused design
- Center amplifying gate
- Guaranteed high dV/dt
- Guaranteed high dl/dt
- International standard case B-PUK (TO-200AC)
- High surge current capability
- Low thermal impedance
- High speed performance
- Designed and qualified for industrial level
- Material categorization: for definitions of compliance please see <u>www.vishay.com/doc?99912</u>

TYPICAL APPLICATIONS

- Inverters
- Choppers
- Induction heating
- · All types of force-commutated converters

MAJOR RATINGS AND CHARACTERISTICS						
PARAMETER	TEST CONDITIONS	VALUES	UNITS			
1		940	A			
I _{T(AV)}	T _{hs}	55	O°			
1		1900	А			
IT(RMS)	T _{hs}	25	C°			
1	50 Hz	20 000	0			
I _{TSM}	60 Hz	20 950	A			
l ² t	50 Hz	2000	kA ² s			
1-1	60 Hz	1820	KA-S			
V _{DRM} /V _{RRM}		400 to 800	V			
tq	Range	10 to 20	μs			
TJ		-40 to +125	O°			

ELECTRICAL SPECIFICATIONS

VOLTAGE R	ATINGS				
TYPE NUMBER	VOLTAGE CODE	V _{DRM} /V _{RRM} , MAXIMUM REPETITIVE PEAK VOLTAGE V	V _{RSM} , MAXIMUM NON-REPETITIVE PEAK VOLTAGE V	I_{DRM}/I_{RRM} MAXIMUM AT T _J = T _J MAXIMUM mA	
VS-ST733CL	04	400	500	75	
V3-317330L	08	800	900	75	

www.vishay.com

Vishay Semiconductors

CURRENT CARRYING CAP	ABILITY						
FREQUENCY	<u>180° e</u>		180°				UNITS
50 Hz	2200	1900	3580	3100	6800	5920	
400 Hz	2050	1660	3600	3130	3750	3240	А
1000 Hz	1370	1070	2900	2450	2120	1780	A .
2500 Hz	500	370	1220	980	960	770	
Recovery voltage V _R	5	50	50		50		V
Voltage before turn-on V _D	V	V _{DRM}		V _{DRM}		DRM	v
Rise of on-state current dl/dt	5	50		-	-		A/µs
Heatsink temperature	40	55	40	55	40	55	°C
Equivalent values for RC circuit	10/	10/0.47		0.47	10/	0.47	Ω/μF

ABSOLUTE MAXIMUM RATING	is						
PARAMETER	SYMBOL		TEST CON	VALUES	UNITS		
Maximum average on-state	L	180° condu	ction, half sine	wave	940 (350)	А	
current at heatsink temperature	I _{T(AV)}	double side	e (single side) co	ooled	55 (85)	°C	
Maximum RMS on-state current	I _{T(RMS)}	DC at 25 °C	heatsink temp	erature double side cooled	1900		
		t = 10 ms	No voltage		20 000		
Maximum peak, one half cycle,	I	t = 8.3 ms	reapplied		20 950	А	
non-repetitive surge current	I _{TSM}	t = 10 ms	100 % V _{RRM}		16 800		
		t = 8.3 ms	reapplied	Sinusoidal half wave,	17 600		
		t = 10 ms	No voltage reapplied 100 % V _{BBM}	initial $T_J = T_J$ maximum	2000	kA ² s	
Maximum I ² t for fusing	l ² t	t = 8.3 ms			1820		
Maximum ret for fusing	1-1	t = 10 ms			1410		
		t = 8.3 ms	reapplied		1290		
Maximum I ² \sqrt{t} for fusing	l²√t	t = 0.1 ms t	o 10 ms, no vo	Itage reapplied	20 000	kA²√s	
Maximum peak on-state voltage	V_{TM}		A, T _J = T _J maxi sine wave pulse		1.63		
Low level value of threshold voltage	V _{T(TO)1}	(16.7 % x π	$x I_{T(AV)} < I < \pi$	x I _{T(AV)}), T _J = T _J maximum	1.09	V	
High level value of threshold voltage	V _{T(TO)2}	$(I > \pi \times I_{T(AV)})$), T _J = T _J maxi	1.20			
Low level value of forward slope resistance	r _{t1}	(16.7 % x π x I _{T(AV)} < I < π x I _{T(AV)}), T _J = T _J maximum			0.32		
High level value of forward slope resistance	r _{t2}	$(I > \pi \times I_{T(AV)}), T_J = T_J maximum$			0.29	mΩ	
Maximum holding current	Ι _Η	T _J = 25 °C,	I _T > 30 A		600	m۸	
Typical latching current	ار	T _J = 25 °C,	V _A = 12 V, R _a =	= 6 Ω, I _G = 1 A	1000	mA	

SWITCHING					
PARAMETER		SYMBOL	TEST CONDITIONS	VALUES	UNITS
Maximum non-repetitive ra of turned-on current	te of rise	dl/dt	T _J = T _J maximum, V _{DRM} = Rated V _{DRM} , I _{TM} = 2 x dl/dt Gate pulse: 20 V 20 Ω, 10 μs 0.5 μs rise time	1000	A∕µs
Typical delay time t _d		t _d	T_J = 25 °C, V_{DM} = Rated V_{DRM} , I_{TM} = 50 A DC, t_p = 1 µs Resistive load, gate pulse: 10 V, 5 Ω source	1.5	
Maximum turn-off time	minimum	+	$T_J = T_J$ maximum, $I_{TM} = 550$ A, commutating dl/dt = 40 A/µs,	10	μs
	maximum	t _q	$V_R = 50$ V, $t_p = 500 \ \mu$ s, dV/dt: see table in device code	20	

Revision: 13-Sep-17 For technical questions within your region: DiodesAmericas@vishay.com, DiodesAsia@vishay.com, DiodesEurope@vishay.com THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000

Downloaded from Arrow.com.

Document Number: 94378

www.vishay.com

SHAY

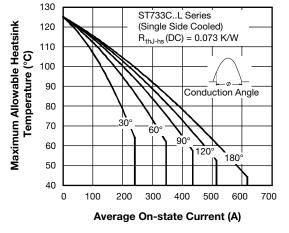
VS-ST733CL Series

Vishay Semiconductors

BLOCKING								
PARAMETER	SYMBOL	TEST CONDITIONS	VALUES	UNITS				
Maximum critical rate of rise of off-state voltage		$T_J = T_J$ maximum, linear to 80 % V _{DRM} , higher value available on request	500	V/µs				
Maximum peak reverse and off-state leakage current	I _{RRM} , I _{DRM}	$T_J = T_J$ maximum, rated V_{DRM}/V_{RRM} applied	75	mA				

TRIGGERING					
PARAMETER	SYMBOL	TEST CONDITIONS	VALUES	UNITS	
Maximum peak gate power	P _{GM}	T,J = T,J maximum, f = 50 Hz, d% = 50	60	w	
Maximum average gate power	P _{G(AV)}	1J = 1J maximum, 1 = 50 Hz, 0% = 50	10	vv	
Maximum peak positive gate current	I _{GM}		10	Α	
Maximum peak positive gate voltage	+V _{GM}	$T_J = T_J$ maximum, $t_p \le 5$ ms	20	V	
Maximum peak negative gate voltage	-V _{GM}		5	v	
Maximum DC gate current required to trigger	I _{GT}	$T_{.1} = 25 \text{ °C}, V_A = 12 \text{ V}, R_a = 6 \Omega$	200	mA	
Maximum DC gate voltage required to trigger	V _{GT}	$I_{\rm J} = 25$ C, $V_{\rm A} = 12$ V, $n_{\rm a} = 0.02$	3	V	
Maximum DC gate current not to trigger	I _{GD}	T _ T maximum rated V	20	mA	
Maximum DC gate voltage not to trigger	V_{GD}	$T_{J} = T_{J}$ maximum, rated V_{DRM} applied	0.25	V	

THERMAL AND MECHANICAL SPECIFICATIONS							
PARAMETER	SYMBOL	TEST CONDITIONS	VALUES	UNITS			
Maximum operating junction temperature range	TJ		-40 to +125	ာ			
Maximum storage temperature range	T _{Stg}		-40 to +150	C			
Maximum thermal resistance, junction to heatsink	D	DC operation single side cooled	0.073				
	R _{thJ-hs}	DC operation double side cooled	0.031	K/W			
Maximum thermal resistance, case to heatsink	Б	DC operation single side cooled	0.011	r∨ vv			
Maximum mermai resistance, case to heatsink	R _{thC-hs}	DC operation double side cooled	0.005				
Mounting force, ± 10 %			14 700 (1500)	N (kg)			
Approximate weight			255	g			
Case style		See dimensions - link at the end of datasheet	B-PUK (TO-	200AC)			


CONDUCTION ANGLE	SINUSOIDAL	CONDUCTION	RECTANGULAR	R CONDUCTION	TEST CONDITIONS	UNITS		
CONDUCTION ANGLE	SINGLE SIDE	DOUBLE SIDE	SINGLE SIDE	DOUBLE SIDE	TEST CONDITIONS	UNITS		
180°	0.009	0.009	0.006	0.006				
120°	0.011	0.011	0.011	0.011				
90°	0.014	0.014	0.015	0.015	$T_J = T_J maximum$	K/W		
60°	0.020	0.021	0.021	0.022				
30°	0.036	0.036	0.036	0.036				

Note

• The table above shows the increment of thermal resistance R_{thJ-hs} when devices operate at different conduction angles than DC

Vishay Semiconductors

www.vishay.com

Fig. 1 - Current Ratings Characteristics

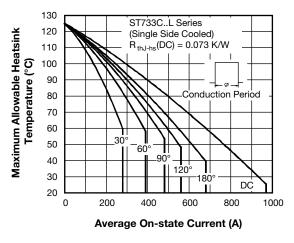


Fig. 2 - Current Ratings Characteristics

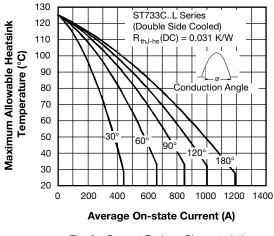
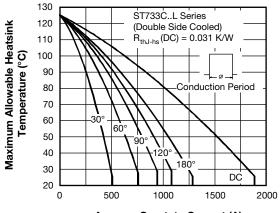



Fig. 3 - Current Ratings Characteristics

Average On-state Current (A)

Fig. 4 - Current Ratings Characteristics

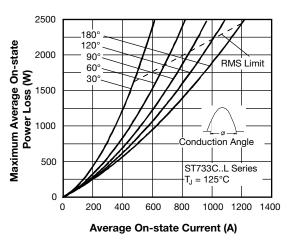


Fig. 5 - On-State Power Loss Characteristics

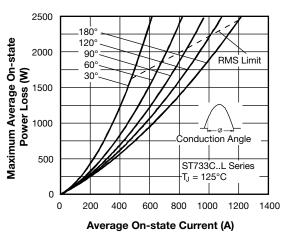


Fig. 6 - On-State Power Loss Characteristics

Revision: 13-Sep-17

4

Document Number: 94378

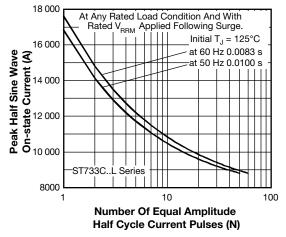


Fig. 7 - Maximum Non-Repetitive Surge Current Single and Double Side Cooled

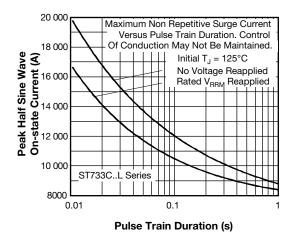


Fig. 8 - Maximum Non-Repetitive Surge Current Single and Double Side Cooled

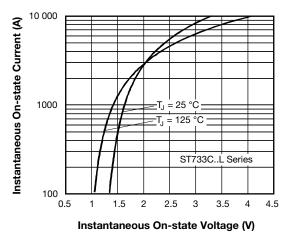


Fig. 9 - On-State Voltage Drop Characteristics

VS-ST733CL Series

Vishay Semiconductors

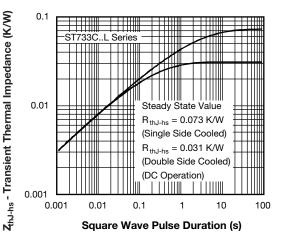
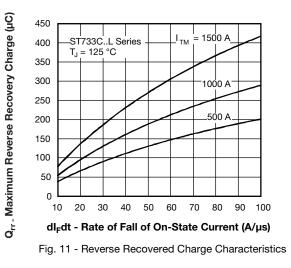



Fig. 10 - Thermal Impedance ZthJC Characteristics

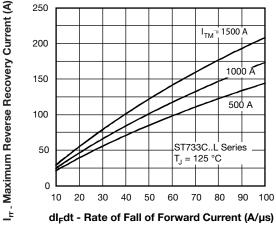
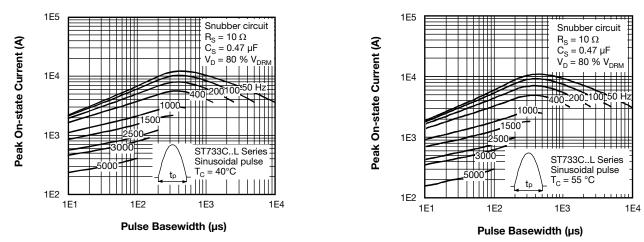
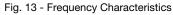
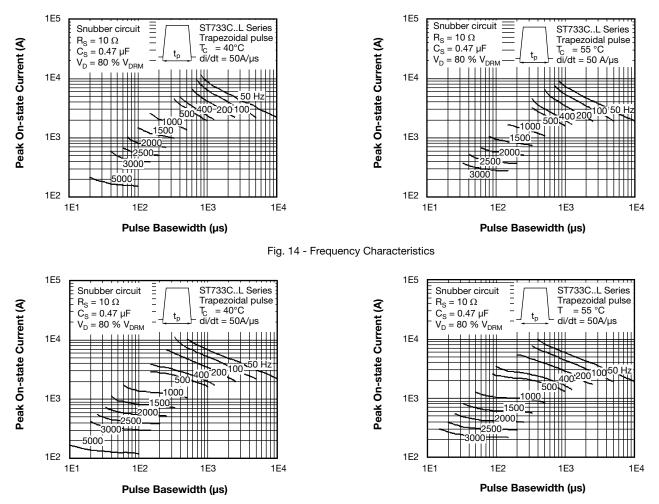
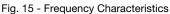


Fig. 12 - Reverse Recovered Current Characteristics


Revision: 13-Sep-17


5

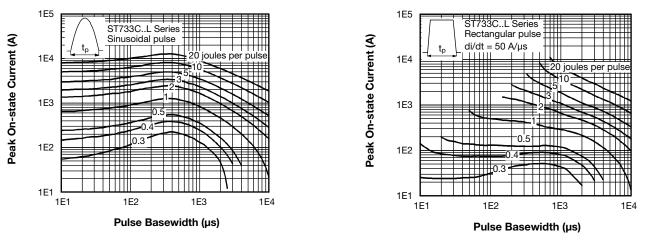

Document Number: 94378


VS-ST733CL Series

Vishay Semiconductors

Revision: 13-Sep-17

SHA


www.vishay.com

6

Document Number: 94378

VS-ST733CL Series

Vishay Semiconductors

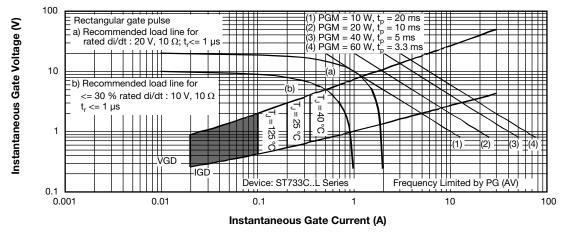


Fig. 17 - Gate Characteristics

 Revision: 13-Sep-17
 7
 Document Number: 94378

 For technical questions within your region: DiodesAmericas@vishay.com, DiodesAsia@vishay.com, DiodesEurope@vishay.com
 DiodesEurope@vishay.com

 THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000

ISHA

www.vishay.com

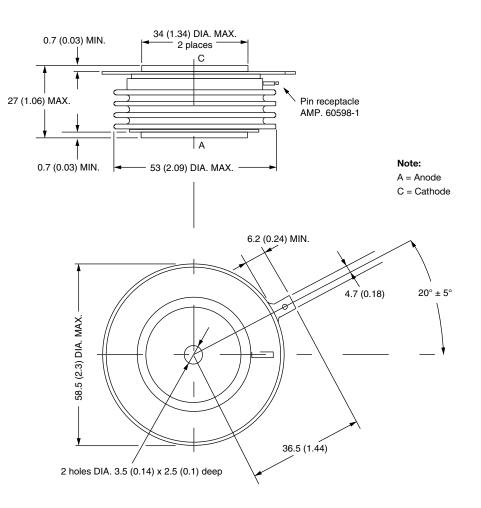
Vishay Semiconductors

www.vishay.com

VISHAY

Device code	VS-	ST	73 3	C 08	3 L	н	к	1	-		
	7.	 Thyris Essen 3 = fax C = ce Voltage (see V 	3 4 y Semiconduc ator atial part numb st turn-off eramic PUK ge code x 100 foltage Rating JK case B-PL	per 9 = V _{RRM} s table)	t	8 8	•			availabl	
	8 - 9 - 10 -	 t_q code 0 = ey (gate a 1 = fas (gate a 2 = ey (gate a 3 = fas (gate a 	velet terminals and auxiliary o st-on terminal and auxiliary o relet terminals and auxiliary o st-on terminal and auxiliary o	sathode unso sathode unso cathode unso cathode sold	oldered lead oldered lead ered leads)	tq * St. ds) All c	(µs) andard p	It (V/µs) 10 12 15 18 20 part num pes avail	CN E CM E CL E CP E CK E	50 100 DN EN DM EM DL EL DP EP DK EK	 FM* - FL* HL FP HP FK H
	11 -	None	al dV/dt: e = 500 V/µs (1000 V/µs (sp								

LINKS TO RELATED DOCUMENTS				
Dimensions	www.vishay.com/doc?95076			



B-PUK (TO-200AC)

DIMENSIONS in millimeters (inches)

Creepage distance: 36.33 (1.430) minimum Strike distance: 17.43 (0.686) minimum

Quote between upper and lower pole pieces has to be considered after application of mounting force (see thermal and mechanical specification)

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Hyperlinks included in this datasheet may direct users to third-party websites. These links are provided as a convenience and for informational purposes only. Inclusion of these hyperlinks does not constitute an endorsement or an approval by Vishay of any of the products, services or opinions of the corporation, organization or individual associated with the third-party website. Vishay disclaims any and all liability and bears no responsibility for the accuracy, legality or content of the third-party website or for that of subsequent links.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.