50RIA Series

Vishay Semiconductors

Medium Power Phase Control Thyristors (Stud Version), 50 A

PRODUCT SUMMARY				
Package	TO-208AC (TO-65)			
Diode variation	Single SCR			
I _{T(AV)}	50 A			
V _{DRM} /V _{RRM}	100 V to 1200 V			
V _{TM}	1.60 V			
I _{GT}	100 mA			
TJ	- 40 °C to 125 °C			

FEATURES

- High current rating
- Excellent dynamic characteristics
- $dV/dt = 1000 V/\mu s$ option
- Superior surge capabilities
- Standard package
- Metric threads version available
- Types up to 1200 V V_{DRM}/V_{RRM}
- Material categorization: For definitions of compliance please see <u>www.vishay.com/doc?99912</u>

TYPICAL APPLICATIONS

- · Phase control applications in converters
- Lighting circuits
- Battery charges
- Regulated power supplies and temperature and speed control circuit
- Can be supplied to meet stringent military, aerospace and other high reliability requirements

MAJOR RATINGS AND CHARACTERISTICS						
PARAMETER	TEST CONDITIONS	VALUES	UNITS			
I		50	A			
I _{T(AV)}	Т _С	94	°C			
I _{T(RMS)}		80	A			
here a	50 Hz	1430	٨			
ITSM	60 Hz	1490	A			
l ² t	50 Hz	10.18	kA ² s			
1-1	60 Hz	9.30	KA-5			
V _{DRM} /V _{RRM}		100 to 1200	V			
t _q	Typical	110	μs			
TJ		- 40 to 125	°C			

ELECTRICAL SPECIFICATIONS

VOLTAGE RATINGS								
TYPE NUMBER	VOLTAGE CODE	PEAK AND OFE-STATE VOLTAGE (1) NON-REPETITIVE PEAK VOLTAGE (4)						
	10	100	150					
	20	200	300					
	40	400	500					
50RIA	60	600	700	15				
	80	800	900					
	100	1000	1100					
	120	1200	1300					

Notes

⁽¹⁾ Units may be broken over non-repetitively in the off-state direction without damage, if dl/dt does not exceed 20 A/µs ⁽²⁾ For voltage pulses with $t_p \le 5$ ms

Revision: 23-Apr-13 1 Document Number: 93711 For technical questions within your region: DiodesAmericas@vishay.com, DiodesAsia@vishay.com, DiodesEurope@vishay.com THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000

50RIA Series

www.vishay.com

Vishay Semiconductors

ABSOLUTE MAXIMUM RATI	NGS					
PARAMETER	SYMBOL		TEST CONDITIONS			UNITS
Maximum average on-state current		190º oipuoo	180° sinusoidal conduction		50	А
at case temperature	I _{T(AV)}	Too Sinusoi			94	°C
Maximum RMS on-state current	I _{T(RMS)}				80	А
		t = 10 ms	No voltage		1430	
Maximum peak, one-cycle		t = 8.3 ms	reapplied		1490	А
non-repetitive surge current	I _{TSM}	t = 10 ms	100 % V _{BBM}		1200	A
		t = 8.3 ms	reapplied	Sinusoidal half wave,	1255	
Maximum I ² t for fusing		t = 10 ms	No voltage	initial $T_J = T_J$ maximum	10.18	kA ² s
	l ² t	t = 8.3 ms	reapplied		9.30	
	1-1	t = 10 ms	100 % V _{RRM} reapplied		7.20	
		t = 8.3 ms			6.56	
Maximum I ² \sqrt{t} for fusing	l²√t		t = 0.1 to 10 ms, no voltage reapplied, T ₁ = T ₁ maximum		101.8	kA²√s
Low level value of threshold voltage	V _{T(TO)1}	(16.7 % x π	$x I_{T(AV)} < I < \pi x I_T$	_(AV)), T _J = T _J maximum	0.94	v
High level value of threshold voltage	V _{T(TO)2}	(π x I _{T(AV)} < I	$<$ 20 x π x I _{T(AV)}),	T _J = T _J maximum	1.08	v
Low level value of on-state slope resistance	r _{t1}	(16.7 % x π	(16.7 % x π x $I_{T(AV)} < I < \pi$ x $I_{T(AV)}), \ T_J = T_J$ maximum			mΩ
High level value of on-state slope resistance	r _{t2}	($\pi \times I_{T(AV)} < I < 20 \times \pi \times I_{T(AV)}$), $T_J = T_J$ maximum		3.34	1115.2	
Maximum on-state voltage	V _{TM}	I _{pk} = 157 A, T _J = 25 °C			1.60	V
Maximum holding current	I _H		T_J = 25 °C, anode supply 22 V, resistive load, initial I_T = 2 A		200	mA
Latching current	ΙL	Anode supp	oly 6 V, resistive lo	ad	400	

SWITCHING							
PARAMETER		SYMBOL	TEST CONDITIONS	VALUES	UNITS		
Maximum rate of	$V_{DRM} \leq 600 \ V$	dl/dt	$T_{C} = 125 \text{ °C}, V_{DM} = \text{Rated } V_{DRM},$	200	A/us		
rise of turned-on current	$V_{DRM} \le 1600 \text{ V}$	ai/at	Gate pulse = 20 V, 15 $\Omega,$ t_p = 6 $\mu s,$ t_r = 0.1 μs maximum I_{TM} = (2 x rated dl/dt) A	100	λγμs		
Typical delay time		t _d	T_C = 25 °C, V_{DM} = Rated V_{DRM} , I_{TM} = 10 A dc resistive circuit Gate pulse = 10 V, 15 Ω source, t_p = 20 μs	0.9			
Typical turn-off time		tq	T _C = 125 °C, I _{TM} = 50 A, reapplied dV/dt = 20 V/ μ s dIr/dt = -10 A/ μ s, V _R = 50 V		μs		

BLOCKING					
PARAMETER	SYMBOL	TEST CONDITIONS	VALUES	UNITS	
Maximum critical rate of rise of	dV/dt	$T_J = T_J$ maximum linear to 100 % rated V_{DRM}	200	V/µs	
off-state voltage	uv/ut	$T_J = T_J$ maximum linear to 67 % rated V_{DRM}	500 (1)	v/µs	

Note

 $^{(1)}$ Available with dV/dt = 1000 V/µs, to complete code add S90 i.e. 50RIA120S90

Revision: 23-Apr-13

2

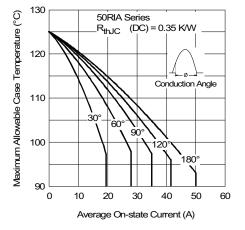
For technical questions within your region: <u>DiodesAmericas@vishay.com</u>, <u>DiodesAsia@vishay.com</u>, <u>DiodesEurope@vishay.com</u> THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT <u>www.vishay.com/doc?91000</u>

TRIGGERING						
PARAMETER	SYMBOL	TES	T CONDITIONS	VALUES	UNITS	
Maximum peak gate power	P _{GM}	$T_J = T_J$ maximum, $t_p \le t$	5 ms	10	W	
Maximum average gate power	P _{G(AV)}			2.5	vv	
Maximum peak positive gate current	I _{GM}			2.5	А	
Maximum peak positive gate voltage	+V _{GM}			20	V	
Maximum peak negative gate voltage	-V _{GM}			10	v	
		T _J = - 40 °C	Maximum required gate trigger current/voltage are the lowest value which will trigger all units 6 V	250	mA • V	
DC gate current required to trigger	I _{GT}	T _J = 25 °C		100		
		T _J = 125 °C		50		
	N	T _J = - 40 °C	anode to cathode applied	3.5		
DC gate voltage required to trigger	V _{GT}	T _J = 25 °C		2.5		
DC gate current not to trigger	I _{GD}	$T_J = T_J$ maximum, V _{DRM} = Rated voltage	Maximum gate current/voltage not to trigger is the maximum	5.0	mA	
DC gate voltage not to trigger	V _{GD}	$T_J = T_J maximum$	value which will not trigger any unit with rated V _{DRM} anode to cathode applied		V	

THERMAL AND MECHANICAL SPECIFICATIONS					
PARAMETER SYMB		TEST CONDITIONS	VALUES	UNITS	
Maximum operating junction and storage temperature range	T _J , T _{Stg}		- 40 to 125	°C	
Maximum thermal resistance, junction to case	R _{thJC}	DC operation	0.35	K/W	
Maximum thermal resistance, case to heatsink	R _{thCS}	hCS Mounting surface, smooth, flat and greased		r\/ ₩	
		Non-lubricated threads	3.4 ^{+ 0 - 10} % (30)	N⋅m	
Allowable mounting torque		Lubricated threads	2.3 ^{+ 0 - 10} % (20)	(lbf ∙ in)	
Anne vingto weight			28	g	
Approximate weight			1.0	oz.	
Case style		See dimensions - link at the end of datasheet TO-208A		C (TO-65)	

CONDUCTION ANGLE	SINUSOIDAL CONDUCTION	RECTANGULAR CONDUCTION	TEST CONDITIONS	UNITS				
180°	0.078	0.057						
120°	0.094	0.098						
90°	0.120	0.130	$T_J = T_J maximum$	K/W				
60°	0.176	0.183						
30°	0.294	0.296						

Note


The table above shows the increment of thermal resistance R_{thJC} when devices operate at different conduction angles than DC

Revision: 23-Apr-13

3

Document Number: 93711

For technical questions within your region: DiodesAmericas@vishay.com, DiodesAsia@vishay.com, DiodesEurope@vishay.com THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000

www.vishay.com

Fig. 1 - Current Ratings Characteristics

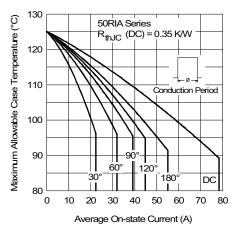


Fig. 2 - Current Ratings Characteristics

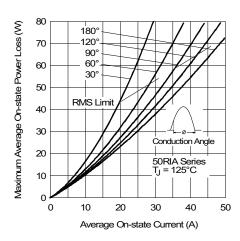


Fig. 3 - On-State Power Loss Characteristics

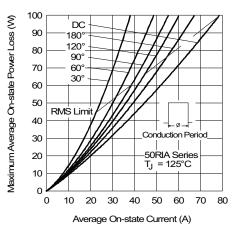


Fig. 4 - On-State Power Loss Characteristics

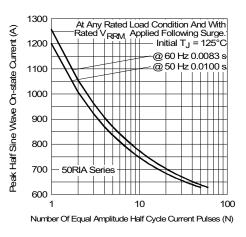


Fig. 5 - Maximum Non-Repetitive Surge Current

Fig. 6 - Maximum Non-Repetitive Surge Current

Revision: 23-Apr-13

4

Document Number: 93711

For technical questions within your region: <u>DiodesAmericas@vishay.com</u>, <u>DiodesAsia@vishay.com</u>, <u>DiodesEurope@vishay.com</u> THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT <u>www.vishay.com/doc?91000</u>

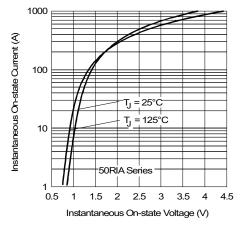
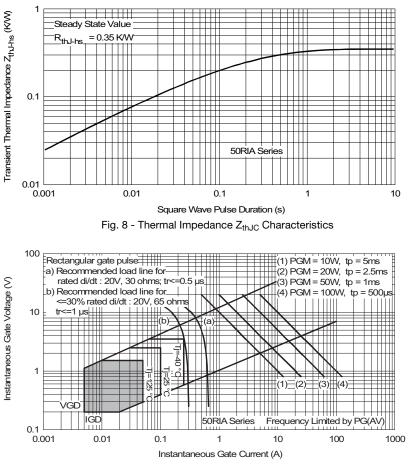
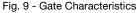




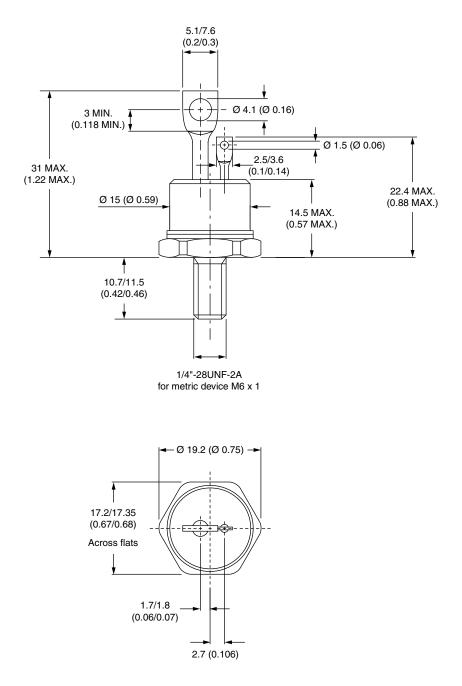
Fig. 7 - Forward Voltage Drop Characteristics

5

For technical questions within your region: <u>DiodesAmericas@vishay.com</u>, <u>DiodesAsia@vishay.com</u>, <u>DiodesEurope@vishay.com</u> THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT <u>www.vishay.com/doc?91000</u>

ORDERING INFORMATION TABLE

Device code	50	RIA	120	S90	М
		2	3	4	5
	234	- Ess - Vol - Crit • N • S	rrent coo sential pa tage coo tical dV/o one = 5 90 = 10 one = S	art numl de x 10 = dt: 00 V/µs 00 V/µs	= V _{RRM} (standa (specia


LINKS TO RELATED DOCUMENTS				
Dimensions	www.vishay.com/doc?95334			

TO-208AC (TO-65)

DIMENSIONS in millimeters (inches)

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and/or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

Material Category Policy

Vishay Intertechnology, Inc. hereby certifies that all its products that are identified as RoHS-Compliant fulfill the definitions and restrictions defined under Directive 2011/65/EU of The European Parliament and of the Council of June 8, 2011 on the restriction of the use of certain hazardous substances in electrical and electronic equipment (EEE) - recast, unless otherwise specified as non-compliant.

Please note that some Vishay documentation may still make reference to RoHS Directive 2002/95/EC. We confirm that all the products identified as being compliant to Directive 2002/95/EC conform to Directive 2011/65/EU.

Vishay Intertechnology, Inc. hereby certifies that all its products that are identified as Halogen-Free follow Halogen-Free requirements as per JEDEC JS709A standards. Please note that some Vishay documentation may still make reference to the IEC 61249-2-21 definition. We confirm that all the products identified as being compliant to IEC 61249-2-21 conform to JEDEC JS709A standards.