VS-6CUT04, VS-6CWT04FN

Vishay Semiconductors

High Performance Schottky Generation 5.0, 2 x 3 A

www.vishay.com

D-PAK(TO-252AA)

I-PAK(TO-251AA)
--------	-----------

PRODUCT SUMMARY D-PAK (TO-252AA), Package I-PAK (TO-251AA) I_{F(AV)} 2 x 3 A V_{R} 45 V 0.54 V V_F at I_F 3 mA at 125 °C I_{RM} max. T_J max. 175 °C Diode variation Common cathode 14 mJ EAS

FEATURES

- 175 °C high performance Schottky diode
- Very low forward voltage drop
- Extremely low reverse leakage
- Optimized V_F vs. I_R trade off for high efficiency
- Increased ruggedness for reverse avalanche capability
- RBSOA available
- Negligible switching losses
- Submicron trench technology
- Compliant to RoHS Directive 2002/95/EC

APPLICATIONS

- Specific for PV cells pybass diode
- High efficiency SMPS
- High frequency switching
- Output rectification
- Reverse battery protection
- Freewheeling
- DC/DC systems
- Increased power density systems

MAJOR RATINGS AND CHARACTERISTICS					
SYMBOL	CHARACTERISTICS VALUES UNITS				
V _{RRM}		45	V		
V _F	3 Apk, T _J = 125 °C (typical, per leg)	0.46	V		
TJ	Range	- 55 to 175	°C		

VOLTAGE RATINGS				
PARAMETER	SYMBOL	TEST CONDITIONS	VS-6CUT04 VS-6CWT04FN	UNITS
Maximum DC reverse voltage	V _R	T _J = 25 °C	45	V

For technical questions within your region: <u>DiodesAmericas@vishay.com</u>, <u>DiodesAsia@vishay.com</u>, <u>DiodesEurope@vishay.com</u> THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT <u>www.vishay.com/doc?91000</u>

1

RoHS

COMPLIANT

www.vishay.com

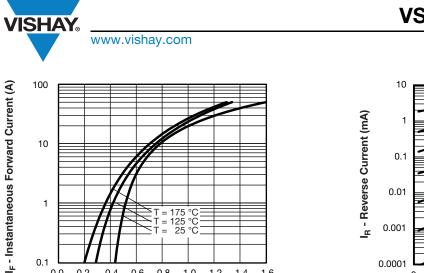
Vishay Semiconductors

ABSOLUTE MAXIMUM RATINGS						
PARAMETER		SYMBOL	TEST CONDITIONS		VALUES	UNITS
Maximum average	per leg		50 % duty cycle at T_{C} = 166 °C, rectangular waveform		3	А
forward current	per device	I _{F(AV)}			6	
Maximum peak one cyc	aximum peak one cycle			Following any rated load condition and with rated V _{RRM} applied	440	А
non-repetitive surge current per leg		IFSM	10 ms sine or 6 ms rect. pulse		70	~
Non-repetitive avalanch energy per leg	e	E _{AS}	T _J = 25 °C, I _{AS} = 1.3 A, L = 16 mH		14	mJ
Repetitive avalanche cu	rrent per leg	I _{AR}	Limited by frequency of operation and time pulse duration so that $T_J < T_J$ max. I_{AS} at T_J max. as a function of time pulse (see fig. 8)		I _{AS} at T _J max.	А

ELECTRICAL SPECIFICATIONS						
PARAMETER	SYMBOL	TEST CONDITIONS		TYP.	MAX.	UNITS
Forward voltage drop per leg	V _{FM} ⁽¹⁾	3 A	T 05 %0	0.535	0.600	v
		6 A	— T _J = 25 °C	0.615	0.680	
		3 A	- T _J = 125 °C	0.485	0.540	v
		6 A		0.570	0.640	
Reverse leakage current per leg	I _{RM} ⁽¹⁾	T _J = 25 °C	V _R = Rated V _R	-	25	μA
		T _J = 125 °C		-	3	mA
Junction capacitance per leg	CT	$V_R = 5 V_{DC}$ (test signal range 100 kHz to 1 MHz), 25 °C		240	-	pF
Series inductance per leg	L _S	Measured lead to lead 5 mm from package body		8.0	-	nH
Maximum voltage rate of change	dV/dt	Rated V _R		-	10 000	V/µs

Note

 $^{(1)}\,$ Pulse width < 300 $\mu s,$ duty cycle < 2 %


THERMAL - MECHANICAL SPECIFICATIONS				
PARAMETER	SYMBOL	TEST CONDITIONS	VALUES	UNITS
Maximum junction and storage temperature range	T _J , T _{Stg}		- 55 to 175	°C
Maximum thermal resistance, junction to case per leg	P		4.7	
Maximum thermal resistance, junction to case per device	– R _{thJC}	DC operation	2.35	°C/W
Typical thermal resistance, case to heatsink	R _{thCS}		0.3	
Approximate weight			0.3	g
			0.01	oz.
		Case style I-PAK	6CU	IT04
Marking device		Case style D-PAK	6CWT	04FN

Revision: 03-Nov-11

2

Document Number: 94650

For technical questions within your region: DiodesAmericas@vishay.com, DiodesAsia@vishay.com, DiodesEurope@vishay.com THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000

T = 175 °C T = 125 °C T = 25 °C

0.8 1.0 1.2 1.4

V_{FM} - Forward Voltage Drop (V)

Fig. 1 - Maximum Forward Voltage Drop Characteristics

0.6

0.4

VS-6CUT04, VS-6CWT04FN

Vishay Semiconductors

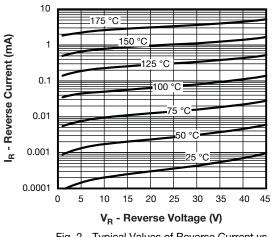
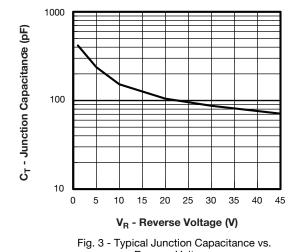
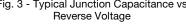
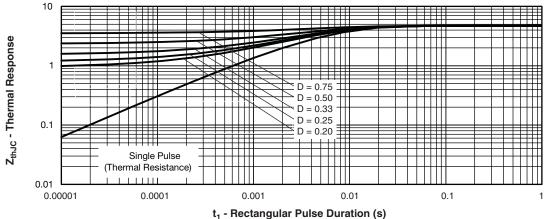
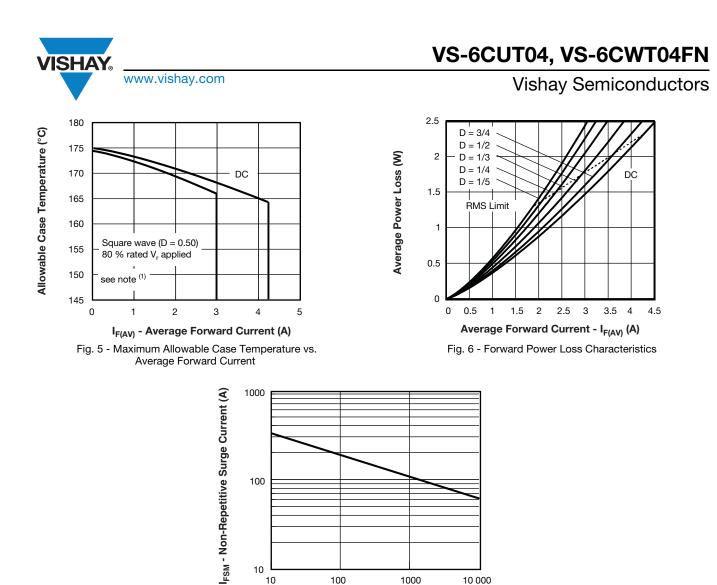





Fig. 2 - Typical Values of Reverse Current vs. **Reverse Voltage**

1.6

1


0.1

0.0

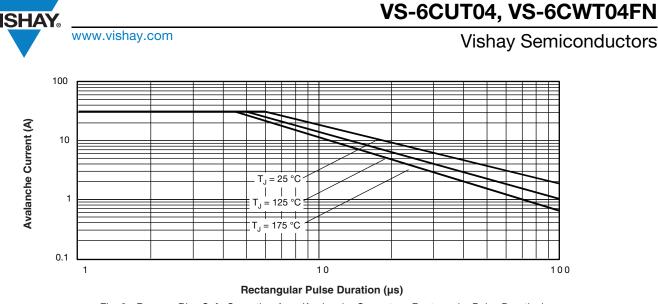
0.2

3

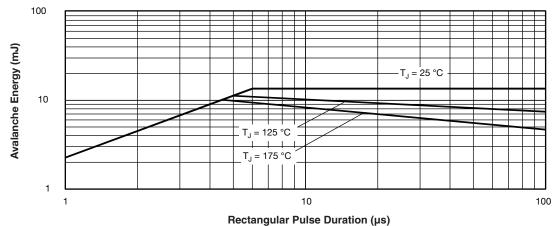
For technical questions within your region: DiodesAmericas@vishay.com, DiodesAsia@vishay.com, DiodesEurope@vishay.com THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000

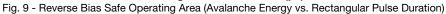
Note ⁽¹⁾ Formula used: $T_C = T_J - (Pd + Pd_{REV}) \times R_{thJC}$;

10

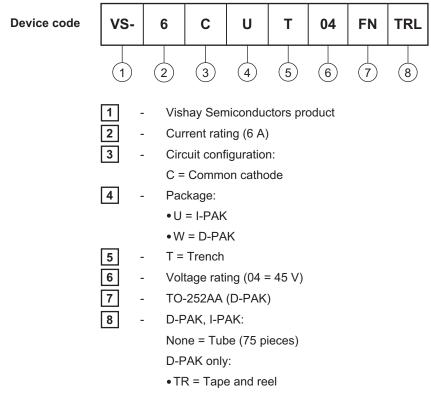

100

1000


 $t_{\rm p}$ - Square Wave Pulse Duration (µs) Fig. 7 - Maximum Non-Repetitive Surge Current


10 000

 $[\]begin{array}{l} \mathsf{Pd} = \mathsf{Forward} \ \mathsf{power} \ \mathsf{loss} = \mathsf{I}_{\mathsf{F}(\mathsf{AV})} \times \mathsf{V}_{\mathsf{FM}} \ \mathsf{at} \ (\mathsf{I}_{\mathsf{F}(\mathsf{AV})}/\mathsf{D}) \ (\mathsf{see} \ \mathsf{fig.} \ \mathsf{6}); \\ \mathsf{Pd}_{\mathsf{REV}} = \mathsf{Inverse} \ \mathsf{power} \ \mathsf{loss} = \mathsf{V}_{\mathsf{R1}} \times \mathsf{I}_{\mathsf{R}} \ (\mathsf{1} - \mathsf{D}); \ \mathsf{I}_{\mathsf{R}} \ \mathsf{at} \ \mathsf{V}_{\mathsf{R1}} = \mathsf{80} \ \% \ \mathsf{rated} \ \mathsf{V}_{\mathsf{R}} \end{array}$



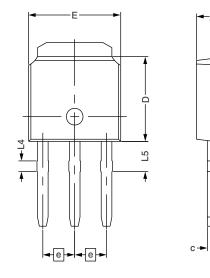
VS-6CUT04, VS-6CWT04FN

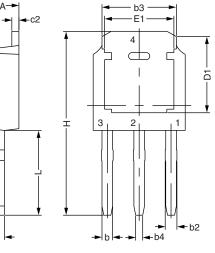
Vishay Semiconductors

ORDERING INFORMATION TABLE

www.vishay.com

- TRL = Tape and reel (left oriented)
- TRR = Tape and reel (right oriented)


LINKS TO RELATED DOCUMENTS				
Dimensions	I-PAK (TO-251AA)	www.vishay.com/doc?95024		
Dimensions	D-PAK (TO-252AA)	www.vishay.com/doc?95448		
Part marking information	I-PAK (TO-251AA)	www.vishay.com/doc?95025		
	D-PAK (TO-252AA)	www.vishay.com/doc?95059		
Packaging information		www.vishay.com/doc?95033		
SPICE model		www.vishay.com/doc?95038		



Vishay Semiconductors

I-PAK - S

DIMENSIONS FOR I-PAK - S in millimeters

OVMDOL	DIMENSIONAL REQUIREMENTS				
SYMBOL	MIN.	NOM.	MAX.		
E	6.40	6.60	6.70		
L	3.98	4.13	4.28		
L4	0.66	0.76	0.86		
L5	1.96	2.16	2.36		
D	6.00	6.10	6.20		
Н	11.05	11.25	11.45		
b	0.64	0.76	0.88		
b2	0.77	0.84	1.14		
b3	5.21	5.34	5.46		
b4	0.41 0.51 0.61		0.61		
е	2.286 BSC				
A	2.20	2.30	2.38		
с	0.40	0.50	0.60		
c2	0.40	0.50	0.60		
D1	5.30	-	-		
E1	4.40	-	-		

Document Number: 95024 Revision: 24-May-11

For technical questions within your region, please contact one of the following: <u>DiodesAmericas@vishay.com</u>, <u>DiodesAsia@vishay.com</u>, <u>DiodesEurope@vishay.com</u>

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and/or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

Material Category Policy

Vishay Intertechnology, Inc. hereby certifies that all its products that are identified as RoHS-Compliant fulfill the definitions and restrictions defined under Directive 2011/65/EU of The European Parliament and of the Council of June 8, 2011 on the restriction of the use of certain hazardous substances in electrical and electronic equipment (EEE) - recast, unless otherwise specified as non-compliant.

Please note that some Vishay documentation may still make reference to RoHS Directive 2002/95/EC. We confirm that all the products identified as being compliant to Directive 2002/95/EC conform to Directive 2011/65/EU.

Vishay Intertechnology, Inc. hereby certifies that all its products that are identified as Halogen-Free follow Halogen-Free requirements as per JEDEC JS709A standards. Please note that some Vishay documentation may still make reference to the IEC 61249-2-21 definition. We confirm that all the products identified as being compliant to IEC 61249-2-21 conform to JEDEC JS709A standards.