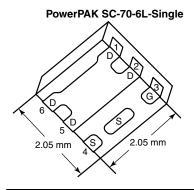
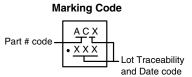


N-Channel 8-V (D-S) MOSFET

PRODUCT SUMMARY									
V _{DS} (V)	$R_{DS(on)}(\Omega)$	I _D (A) ^a	Q _g (Typ.)						
8	0.011 at V _{GS} = 4.5 V	12							
	0.013 at V _{GS} = 2.5 V	12							
	0.016 at V _{GS} = 1.8 V	12	19 nC						
	0.022 at V _{GS} = 1.5 V	12							
	0.041 at V _{GS} = 1.2 V	12							

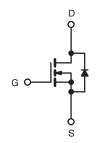
FEATURES


- TrenchFET® Power MOSFET
- New Thermally Enhanced PowerPAK® SC-70 Package
 - Small Footprint Area
- Material categorization: For definitions of compliance please see www.vishay.com/doc?99912



HALOGEN FREE

APPLICATIONS


· Load Switch for Portable Applications

Ordering Information:

SiA414DJ-T4-GE3 (Lead (Pb)-free and Halogen-free) SiA414DJ-T1-GE3 (Lead (Pb)-free and Halogen-free)

N-Channel MOSFET

ABSOLUTE MAXIMUM RATIN	$IGS (I_A = 25 \degree C)$, unless other	wise noted)		
Parameter		Symbol	Limit	Unit	
Drain-Source Voltage	V _{DS}	8	V		
Gate-Source Voltage		V_{GS}	± 5	v	
	T _C = 25 °C		12 ^a		
Continuous Drain Current (T _{.1} = 150 °C)	T _C = 70 °C	I _D	12 ^a		
Continuous Diain Current (1) = 150° C)	T _A = 25 °C	J 'U [12 ^{a, b, c}		
	T _A = 70 °C		11.6 ^{b, c}	A	
Pulsed Drain Current	I _{DM}	40			
Continuous Source-Drain Diode Current	T _C = 25 °C		12 ^a		
Continuous Source-Drain Diode Current	T _A = 25 °C	Is	2.9 ^{b, c}		
	T _C = 25 °C		19		
Maximum Power Dissipation	T _C = 70 °C	P _D	12	w	
Maximum Fower Dissipation	T _A = 25 °C] 'U [3.5 ^{b, c}	VV	
	T _A = 70 °C		2.2 ^{b, c}		
Operating Junction and Storage Temperatur	T _J , T _{stg}	- 55 to 150	°C		
Soldering Recommendations (Peak Tempera		260			

THERMAL RESISTANCE RATINGS									
Parameter		Symbol	Typical	Maximum	Unit				
Maximum Junction-to-Ambient ^{b, f}	t ≤ 5 s	R _{thJA}	28	36	°C/W				
Maximum Junction-to-Case (Drain)	Steady State	R_{thJC}	5.3	6.5	O, VV				

Notes:

- a. Package limited
- b. Surface mounted on 1" x 1" FR4 board.
- d. See solder profile (www.vishay.com/ppg273257). The PowerPAK SC-70 is a leadless package. The end of the lead terminal is exposed copper (not plated) as a result of the singulation process in manufacturing. A solder fillet at the exposed copper tip cannot be guaranteed and is not required to ensure adequate bottom side solder interconnection.
 e. Rework conditions: manual soldering with a soldering iron is not recommended for leadless components.
 f. Maximum under steady state conditions is 80 °C/W.

Document Number: 73954 S12-1141-Rev. C, 21-May-12 For more information please contact: pmostechsupport@vishay.com

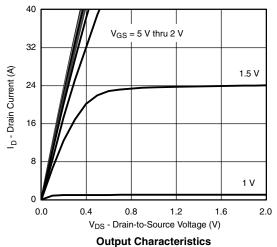
www.vishay.com

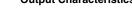
SiA414DJ

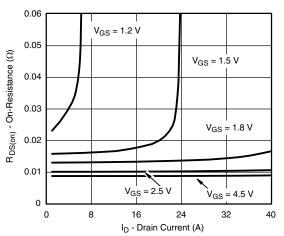
Vishay Siliconix

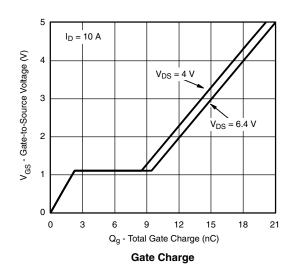
Static Drain-Source Breakdown Voltage Λ VDS Temperature Coefficient ΔVG Gate-Source Threshold Voltage VG Gate-Source Leakage In Zero Gate Voltage Drain Current In On-State Drain Currenta In Drain-Source On-State Resistancea R Forward Transconductancea C Input Capacitance C Output Capacitance C Reverse Transfer Capacitance C Total Gate Charge C Gate-Source Charge C	Mbol	Test Conditions $V_{GS} = 0 \text{ V, } I_D = 250 \text{ μA}$ $I_D = 250 \text{ μA}$ $V_{DS} = V_{GS} \text{ , } I_D = 250 \text{ μA}$ $V_{DS} = 0 \text{ V, } V_{GS} = \pm 5 \text{ V}$ $V_{DS} = 8 \text{ V, } V_{GS} = 0 \text{ V}$ $V_{DS} = 8 \text{ V, } V_{GS} = 0 \text{ V, } T_J = 55 \text{ °C}$ $V_{DS} \ge 5 \text{ V, } V_{GS} = 4.5 \text{ V}$	8 0.35	9 - 3	0.8 ± 100	V mV/°C		
Drain-Source Breakdown Voltage \(\)	/ _{DS} /T _J S(th)/T _J GS(th) GSS DSS	$I_D = 250 \mu A$ $V_{DS} = V_{GS}, I_D = 250 \mu A$ $V_{DS} = 0 \text{ V}, V_{GS} = \pm 5 \text{ V}$ $V_{DS} = 8 \text{ V}, V_{GS} = 0 \text{ V}$ $V_{DS} = 8 \text{ V}, V_{GS} = 0 \text{ V}, T_J = 55 \text{ °C}$		_		mV/°C		
VDS Temperature Coefficient ΔN VGS(th) Temperature Coefficient ΔNG Gate-Source Threshold Voltage VG Gate-Source Leakage Id Zero Gate Voltage Drain Current Id On-State Drain Currenta In Drain-Source On-State Resistancea Resistancea Forward Transconductancea Companicb Input Capacitance Companical Co	/ _{DS} /T _J S(th)/T _J GS(th) GSS DSS	$I_D = 250 \mu A$ $V_{DS} = V_{GS}, I_D = 250 \mu A$ $V_{DS} = 0 \text{ V}, V_{GS} = \pm 5 \text{ V}$ $V_{DS} = 8 \text{ V}, V_{GS} = 0 \text{ V}$ $V_{DS} = 8 \text{ V}, V_{GS} = 0 \text{ V}, T_J = 55 \text{ °C}$		_		mV/°C		
V _{GS(th)} Temperature Coefficient ΔV _G Gate-Source Threshold Voltage V _G Gate-Source Leakage I _G Zero Gate Voltage Drain Current I _G On-State Drain Current ^a I _G Drain-Source On-State Resistance ^a R _G Forward Transconductance ^a Dynamic ^b Input Capacitance G Output Capacitance G Reverse Transfer Capacitance G Total Gate Charge G Gate-Source Charge G	S(th)/T _J GS(th) GSS DSS	$V_{DS} = V_{GS}$, $I_D = 250 \mu A$ $V_{DS} = 0 \text{ V}$, $V_{GS} = \pm 5 \text{ V}$ $V_{DS} = 8 \text{ V}$, $V_{GS} = 0 \text{ V}$ $V_{DS} = 8 \text{ V}$, $V_{GS} = 0 \text{ V}$, $V_{JS} = 55 \text{ °C}$	0.35	_				
Gate-Source Threshold Voltage Gate-Source Leakage Zero Gate Voltage Drain Current On-State Drain Current Drain-Source On-State Resistance Forward Transconductance Dynamicb Input Capacitance Output Capacitance Reverse Transfer Capacitance Gate-Source Charge	GSS(th) GSS DSS	$V_{DS} = V_{GS}$, $I_D = 250 \mu A$ $V_{DS} = 0 \text{ V}$, $V_{GS} = \pm 5 \text{ V}$ $V_{DS} = 8 \text{ V}$, $V_{GS} = 0 \text{ V}$ $V_{DS} = 8 \text{ V}$, $V_{GS} = 0 \text{ V}$, $V_{JS} = 55 \text{ °C}$	0.35	- 3				
Gate-Source Leakage Zero Gate Voltage Drain Current On-State Drain Current Drain-Source On-State Resistance Forward Transconductance Dynamicb Input Capacitance Output Capacitance Reverse Transfer Capacitance Gate-Source Charge	GSS DSS	$V_{DS} = 0 \text{ V}, V_{GS} = \pm 5 \text{ V}$ $V_{DS} = 8 \text{ V}, V_{GS} = 0 \text{ V}$ $V_{DS} = 8 \text{ V}, V_{GS} = 0 \text{ V}, T_{J} = 55 \text{ °C}$	0.35			V		
Zero Gate Voltage Drain Current On-State Drain Current ^a Drain-Source On-State Resistance ^a Forward Transconductance ^a Dynamic ^b Input Capacitance Output Capacitance Reverse Transfer Capacitance Total Gate Charge Gate-Source Charge	DSS	V _{DS} = 8 V, V _{GS} = 0 V V _{DS} = 8 V, V _{GS} = 0 V, T _J = 55 °C			± 100			
On-State Drain Current ^a Drain-Source On-State Resistance ^a Forward Transconductance ^a Dynamic ^b Input Capacitance Output Capacitance Reverse Transfer Capacitance Total Gate Charge Gate-Source Charge		V _{DS} = 8 V, V _{GS} = 0 V, T _J = 55 °C				nA		
On-State Drain Current ^a Drain-Source On-State Resistance ^a Forward Transconductance ^a Dynamic ^b Input Capacitance Output Capacitance Reverse Transfer Capacitance Total Gate Charge Gate-Source Charge					1	μΑ		
Drain-Source On-State Resistance ^a Forward Transconductance ^a Dynamic ^b Input Capacitance Output Capacitance Reverse Transfer Capacitance Total Gate Charge Gate-Source Charge	D(on)	$V_{DS} \ge 5 \text{ V}, V_{GS} = 4.5 \text{ V}$			10			
Forward Transconductance ^a Dynamic ^b Input Capacitance Output Capacitance Reverse Transfer Capacitance Total Gate Charge Gate-Source Charge		DO , GO -	20			Α		
Forward Transconductance ^a Dynamic ^b Input Capacitance Output Capacitance Reverse Transfer Capacitance Total Gate Charge Gate-Source Charge		$V_{GS} = 4.5 \text{ V}, I_D = 9.7 \text{ A}$		0.009	0.011	1		
Forward Transconductance ^a Dynamic ^b Input Capacitance Output Capacitance Reverse Transfer Capacitance Total Gate Charge Gate-Source Charge		$V_{GS} = 2.5 \text{ V}, I_D = 9 \text{ A}$		0.011	0.013	Ω		
Forward Transconductance ^a Dynamic ^b Input Capacitance Output Capacitance Reverse Transfer Capacitance Total Gate Charge Gate-Source Charge	OS(on)	V _{GS} = 1.8 V, I _D = 8.1 A		0.013	0.016			
Dynamic ^b Input Capacitance (Coutput Capacitance (, ,	V _{GS} = 1.5 V, I _D = 4.5 A		0.016	0.022			
Dynamic ^b Input Capacitance (Coutput Capacitance (ŀ	V _{GS} = 1.2 V, I _D = 2.4 A		0.041	1			
Dynamic ^b Input Capacitance (Coutput Capacitance (g _{fs}	V _{DS} = 4 V, I _D = 9.7 A		50		S		
Input Capacitance Cuput Capaci		J. J. J.						
Output Capacitance Reverse Transfer Capacitance Total Gate Charge Gate-Source Charge	C _{iss}			1800	1	pF		
Reverse Transfer Capacitance Total Gate Charge Gate-Source Charge	Poss	V _{DS} = 4 V, V _{GS} = 0 V, f = 1 MHz		650				
Total Gate Charge Gate-Source Charge	O _{rss}			450				
Gate-Source Charge		$V_{DS} = 4 \text{ V}, V_{GS} = 5 \text{ V}, I_{D} = 10 \text{ A}$		21	32	nC		
	Q_g			19	29			
	Q _{gs}	$V_{DS} = 4 \text{ V}, V_{GS} = 4.5 \text{ V}, I_{D} = 10 \text{ A}$		2.5				
	Q_{gd}			6.5				
	R _g	f = 1 MHz		2.5		Ω		
	d(on)			12	20			
Rise Time	t _r			10	15			
	d(off)	$V_{DD} = 4 \text{ V}, R_L = 0.4 \Omega$		65	100			
Fall Time	t _f	$I_D \cong 10 \text{ A}, V_{GEN} = 4.5 \text{ V}, R_g = 1 \Omega$		20	30			
	d(on)			10	15	ns		
Rise Time	t _r			10	15			
	d(off)	$V_{DD} = 4 \text{ V}, R_L = 0.4 \Omega$		35	55			
Fall Time	t _f	$I_D \cong 10 \text{ A}, V_{GEN} = 5 \text{ V}, R_g = 1 \Omega$	 	10	15			
Drain-Source Body Diode Characteristics	1		<u> </u>	1 10				
Continuous Source-Drain Diode Current	I _S	T _C = 25 °C			12			
	I _{SM}	0 == =			40	Α		
	/ _{SD}	I _S = 10 A, V _{GS} = 0 V		0.8	1.2	V		
	t _{rr}	15 - 1071, VGS - 0 V	-	40	80	-		
	$\frac{r_{rr}}{Q_{rr}}$		-	20	40	ns nC		
		$I_F = 10 \text{ A}, \text{ di/dt} = 100 \text{ A/}\mu\text{s}, T_J = 25 °\text{C}$	<u> </u>		40	110		
Reverse Recovery Fall Time Reverse Recovery Rise Time	t _a		ļ	12 28	<u> </u>	ns		

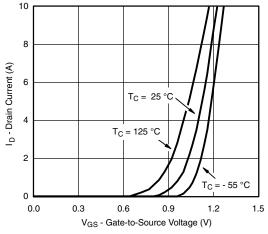
Notes

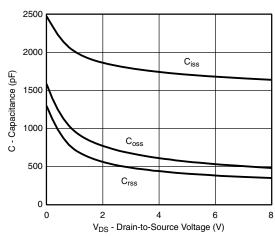

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.


a. Pulse test; pulse width \leq 300 μ s, duty cycle \leq 2 %

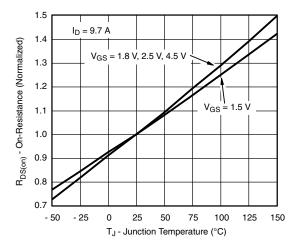

b. Guaranteed by design, not subject to production testing.


TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)



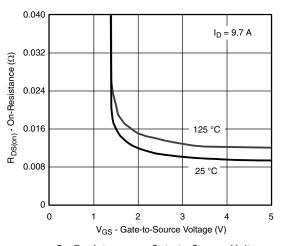


On-Resistance vs. Drain Current and Gate Voltage

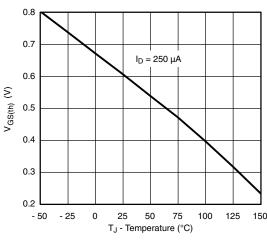


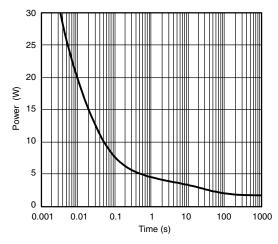
Transfer Characteristics

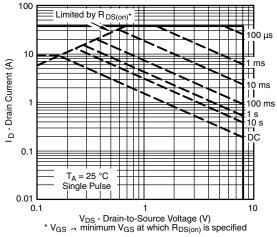
Capacitance



On-Resistance vs. Junction Temperature

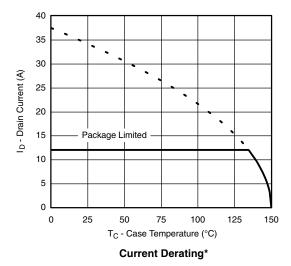

TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)

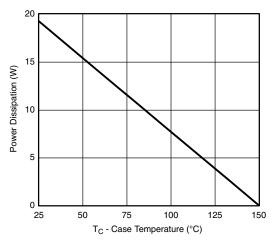

Source-Drain Diode Forward Voltage


On-Resistance vs. Gate-to-Source Voltage

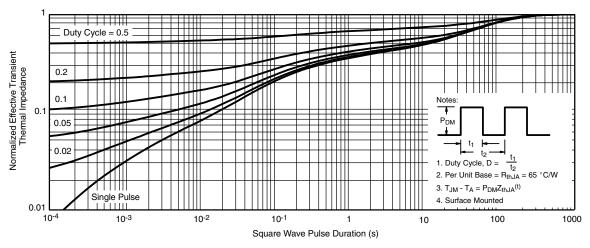
Threshold Voltage

Single Pulse Power (Junction-to-Ambient)

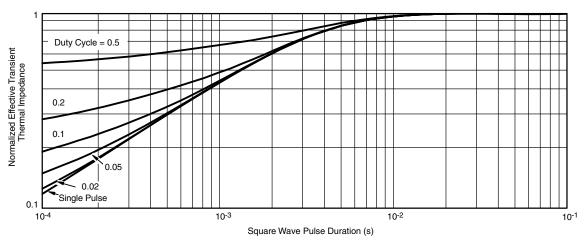

Safe Operating Area, Junction-to-Ambient



TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)



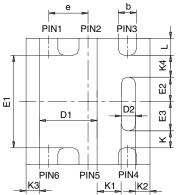
Power Derating

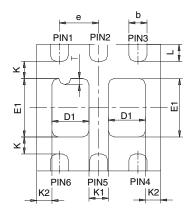

^{*} The power dissipation P_D is based on $T_{J(max)} = 150$ °C, using junction-to-case thermal resistance, and is more useful in settling the upper dissipation limit for cases where additional heatsinking is used. It is used to determine the current rating, when this rating falls below the package limit.

VISHAY.

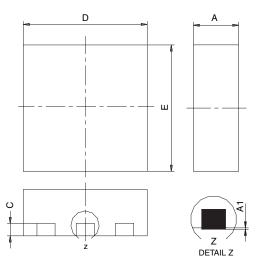
TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)

Normalized Thermal Transient Impedance, Junction-to-Ambient




Normalized Thermal Transient Impedance, Junction-to-Case

Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and reliability data, see www.vishay.com/ppq?73954.

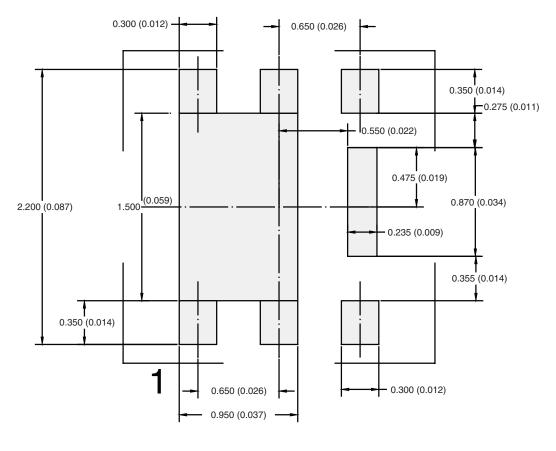

PowerPAK® SC70-6L

BACKSIDE VIEW OF SINGLE

BACKSIDE VIEW OF DUAL

- All dimensions are in millimeters
 Package outline exclusive of mold flash and metal burr
 Package outline inclusive of plating

			SINGL	E PAD			DUAL PAD						
DIM	M	ILLIMETER	RS		INCHES		MILLIMETERS		INCHES				
	Min	Nom	Max	Min	Nom	Max	Min	Nom	Max	Min	Nom	Max	
Α	0.675	0.75	0.80	0.027	0.030	0.032	0.675	0.75	0.80	0.027	0.030	0.032	
A 1	0	-	0.05	0	-	0.002	0	-	0.05	0	-	0.002	
b	0.23	0.30	0.38	0.009	0.012	0.015	0.23	0.30	0.38	0.009	0.012	0.015	
С	0.15	0.20	0.25	0.006	0.008	0.010	0.15	0.20	0.25	0.006	0.008	0.010	
D	1.98	2.05	2.15	0.078	0.081	0.085	1.98	2.05	2.15	0.078	0.081	0.085	
D1	0.85	0.95	1.05	0.033	0.037	0.041	0.513	0.613	0.713	0.020	0.024	0.028	
D2	0.135	0.235	0.335	0.005	0.009	0.013							
E	1.98	2.05	2.15	0.078	0.081	0.085	1.98	2.05	2.15	0.078	0.081	0.085	
E1	1.40	1.50	1.60	0.055	0.059	0.063	0.85	0.95	1.05	0.033	0.037	0.041	
E2	0.345	0.395	0.445	0.014	0.016	0.018							
E3	0.425	0.475	0.525	0.017	0.019	0.021							
е		0.65 BSC			0.026 BSC			0.65 BSC			0.026 BSC		
K		0.275 TYP			0.011 TYP			0.275 TYP			0.011 TYP		
K1		0.400 TYP			0.016 TYP			0.320 TYP			0.013 TYP		
K2		0.240 TYP		0.009 TYP			0.252 TYP			0.010 TYP			
К3		0.225 TYP		0.009 TYP									
K4		0.355 TYP		0.014 TYP									
L	0.175	0.275	0.375	0.007	0.011	0.015	0.175	0.275	0.375	0.007	0.011	0.015	
Т							0.05	0.10	0.15	0.002	0.004	0.006	
ECN: C-07431 - Rev. C. 06-Aug-07													


DWG: 5934

Document Number: 73001 06-Aug-07

www.vishay.com

RECOMMENDED PAD LAYOUT FOR PowerPAK® SC70-6L Single

Dimensions in mm/(Inches)

Return to Index

ATTLICATION NOTE

Legal Disclaimer Notice

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Hyperlinks included in this datasheet may direct users to third-party websites. These links are provided as a convenience and for informational purposes only. Inclusion of these hyperlinks does not constitute an endorsement or an approval by Vishay of any of the products, services or opinions of the corporation, organization or individual associated with the third-party website. Vishay disclaims any and all liability and bears no responsibility for the accuracy, legality or content of the third-party website or for that of subsequent links.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.