

Vishay Siliconix

Dual P-Channel 20 V (D-S) MOSFET

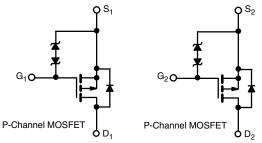
PRODUCT SUMMARY					
V _{DS} (V)	R _{DS(on)} (Ω) MAX.	I _D (A)	Q _g (TYP.)		
-20	0.054 at V _{GS} = -4.5 V	-4.5 ^a			
	0.070 at V _{GS} = -2.5 V	-4.5 ^a	9.5 nC		
	0.104 at V _{GS} = -1.8 V	-4.5 ^a	9.5110		
	0.165 at V _{GS} = -1.5 V	-1.5			

PowerPAK® SC-70-6L Dual

Marking Code: DP Ordering Information:

SiA923AEDJ-T1-GE3 (Lead (Pb)-free and Halogen-free)

FEATURES


- TrenchFET® Power MOSFET
- Thermally Enhanced PowerPAK® SC-70 Package
 - Small Footprint Area
 - Low On-Resistance
- Typical ESD Protection: 2500 V
- 100 % R_q Tested
- Material categorization: For definitions of compliance please see www.vishay.com/doc?99912

COMPLIANT HALOGEN FREE

APPLICATIONS

- Charger Switches and Load Switches for Portable Devices
- DC/DC Converters

PARAMETER	SYMBOL	LIMIT	UNIT		
Drain-Source Voltage	V _{DS}	-20	V		
Gate-Source Voltage	V _{GS}	± 8	v		
	T _C = 25 °C		-4.5 ^a		
Continuous Drain Current (T. 150 °C)	T _C = 70 °C		-4.5 ^a		
Continuous Drain Current (T _J = 150 °C)	T _A = 25 °C	I _D	-4.5 a,b,c		
	T _A = 70 °C		-4.5 a,b,c	А	
Pulsed Drain Current (t = 100 μs)		I _{DM}	-15		
Castinosas Casuras Busin Biada Comunat	T _C = 25 °C	,	-4.5 ^a		
Continuous Source-Drain Diode Current	T _A = 25 °C	I _S	-1.6 ^{b,c}		
	T _C = 25 °C		7.8		
Marian and Danier Disable at	T _C = 70 °C	D	5	14/	
Maximum Power Dissipation	T _A = 25 °C	P _D	1.9 ^{b,c}	W	
	T _A = 70 °C		1.2 b,c		
Operating Junction and Storage Temperature R	T _J , T _{stg}	-55 to 150	°C		
Soldering Recommendations (Peak Temperatur		260			

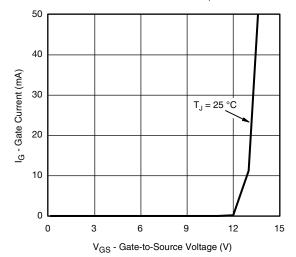
THERMAL RESISTANCE RATINGS						
PARAMETER	SYMBOL	TYPICAL	MAXIMUM	UNIT		
Maximum Junction-to-Ambient b,f	t ≤ 5 s	R _{thJA}	52	65	°C/W	
Maximum Junction-to-Case (Drain)	Steady State	R _{thJC}	12.5	16	C/VV	

Notes

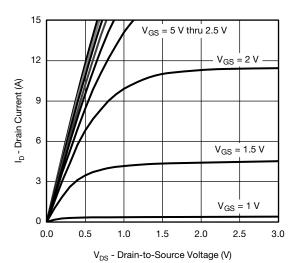
- a. Package limited.
- b. Surface mounted on 1" x 1" FR4 board.
- c. t = 5 s
- d. See solder profile (www.vishay.com/doc?73257). The PowerPAK SC-70 is a leadless package. The end of the lead terminal is exposed copper (not plated) as a result of the singulation process in manufacturing. A solder fillet at the exposed copper tip cannot be guaranteed and is not required to ensure adequate bottom side solder interconnection.
- e. Rework conditions: Manual soldering with a soldering iron is not recommended for leadless components.
- f. Maximum under steady state conditions is 110 °C/W.

Document Number: 62936

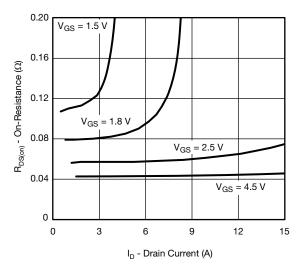
Vishay Siliconix

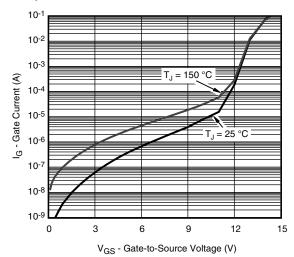

Drain-Source Breakdown Voltage V _{DS} V _{QS} = 0 V, I _D = -250 μA	SPECIFICATIONS ($T_J = 25 ^{\circ}C$,	SPECIFICATIONS (T _J = 25 °C, unless otherwise noted)								
Drain-Source Breakdown Voltage V _{DS} V _{DS} = 0 V, I _D = -250 μA -20 - - V V _{OS} Temperature Coefficient ΔV _{OSRIM} Tamperature Coefficient ΔV _{OSRIM} Tamperature Coefficient ΔV _{OSRIM} Tamperature Coefficient - -15 - TMV/°C Gate-Source Threshold Voltage Voseih Voseih Voseih Voseih -0.4 - -0.9 V Gate-Source Leakage I _{GSS} Vosein - 20 V, V _{GS} = 4.5 V - ± 0.3 ± 3 ± 3 Zero Gate Voltage Drain Current I _{GSS} V _{OS} = 0 V, V _{GS} = 0 V, V _{GS} = 0 V -	PARAMETER	SYMBOL	TEST CONDITIONS	MIN.	TYP.	MAX.	UNIT			
V _{DS} Temperature Coefficient AV _{DS} (T _J) I _D = -250 μA - -15 - m//°C Gate-Source Threshold Voltage V _{OSEN} (Sate-Source Earlange) V _{OSE} + V _{OSE} (Sate-Source Earlange) V _{OSE} + V _{OSE} (Sate-Source Earlange) -	Static	•								
Vosition	Drain-Source Breakdown Voltage	V_{DS}	$V_{GS} = 0 \text{ V}, I_D = -250 \mu\text{A}$	-20	-	-	V			
Vosamical perpenditure Coefficient AVGSBMP/T - 2.5	V _{DS} Temperature Coefficient		J 050 A	-	-15	-	mV/°C			
Cate-Source Leakage	V _{GS(th)} Temperature Coefficient		I _D = -250 μA	i	2.5	-				
Caste -Source Leakage Caste -Source Charge Caste -Source Charge Caste -Caste -C	Gate-Source Threshold Voltage	V _{GS(th)}	$V_{DS} = V_{GS}, I_D = -250 \mu A$	-0.4	-	-0.9	V			
Vos = 0, V, Vos = 0, V, Vos = 0 V Vos	Cata Sauraa Laakaga	ı	$V_{DS} = 0 \text{ V}, V_{GS} = \pm 4.5 \text{ V}$	-	± 0.3	± 3				
Vos = -20 V, Vos = 0 V	Gate-Source Leakage	IGSS	$V_{DS} = 0 \text{ V}, V_{GS} = \pm 8 \text{ V}$	-	± 3	± 30	– μA			
On-State Drain Current a IDDORNOUS SET SET SET SET SET SET SET SET SET SE	Zava Cata Valtaga Dvain Cuwant	I _{DSS}	V _{DS} = -20 V, V _{GS} = 0 V	-	-	-1				
Drain-Source On-State Resistance a R _{DS(on)}	Zero Gate Voltage Drain Current		V _{DS} = -20 V, V _{GS} = 0 V, T _J = 55 °C	-	-	-10				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	On-State Drain Current ^a	I _{D(on)}	$V_{DS} \le -5 \text{ V}, V_{GS} = -4.5 \text{ V}$	-15	-	-	Α			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $, ,	$V_{GS} = -4.5 \text{ V}, I_D = -3.8 \text{ A}$	-	0.044	0.054				
V _{GS} = -1.8 V, I _D = -1 A	Drain Source On State Posistance 8	D	$V_{GS} = -2.5 \text{ V}, I_D = -3.3 \text{ A}$	-	0.057	0.070	Ω			
Forward Transconductance a g g S V D S S A S S S	Dialii-Source Oil-State Resistance ~	□DS(on)	V _{GS} = -1.8 V, I _D = -1 A	-	0.075	0.104				
Dynamic b Input Capacitance Ciss VDS = -10 V, VGS = 0 V, f = 1 MHz - 770 - PF Reverse Transfer Capacitance Crss VDS = -10 V, VGS = -8 V, ID = -4.9 A - - 81 - Total Gate Charge Qg VDS = -10 V, VGS = -8 V, ID = -4.9 A - 16.3 25 Gate-Source Charge Qgs VDS = -10 V, VGS = -4.5 V, ID = -4.9 A - 1.4 - Gate-Drain Charge Qgd F = 1 MHz 1 5.1 10 Ω Gate Resistance Rg f = 1 MHz 1 5.1 10 Ω Turn-On Delay Time td(Ion) VDD = -10 V, RL = 2.6 Ω - 16 25 Turn-Off Delay Time tg(Ion) VDD = -10 V, RL = 2.6 Ω - 10 15 Rise Time tg VDD = -10 V, RL = 2.6 Ω - 12 20 Turn-Off Delay Time tg/In VDD = -10 V, RL = 2.6 Ω - 12 20 Turn-Off Delay Time tg/In Tree - - - <td></td> <td></td> <td>V_{GS} = -1.5 V, I_D = -0.5 A</td> <td>-</td> <td>0.097</td> <td>0.165</td> <td>1</td>			V _{GS} = -1.5 V, I _D = -0.5 A	-	0.097	0.165	1			
$ \begin{array}{ c c c c c c } \hline \text{Input Capacitance} & C_{iss} \\ \hline \text{Output Capacitance} & C_{oss} \\ \hline \text{Reverse Transfer Capacitance} & C_{rss} \\ \hline \hline \text{Reverse Transfer Capacitance} & C_{rss} \\ \hline \hline \text{Total Gate Charge} & Q_g \\ \hline \text{Gate-Source Charge} & Q_{ga} \\ \hline \text{Gate-Drain Charge} & Q_{gd} \\ \hline \text{Gate Resistance} & R_g \\ \hline \text{Gate Resistance} & R_g \\ \hline \text{Turn-On Delay Time} & t_{d(ori)} \\ \hline \text{Fall Time} & t_f \\ \hline \text{Turn-On Delay Time} & t_{d(ori)} \\ \hline \text{Rise Time} & t_f \\ \hline \text{Turn-Off Delay Time} & t_{d(ori)} \\ \hline \text{Rise Time} & t_f \\ \hline \text{Turn-Off Delay Time} & t_{d(ori)} \\ \hline \text{Rise Time} & t_f \\ \hline \text{Turn-Off Delay Time} & t_{d(ori)} \\ \hline \text{Rise Time} & t_f \\ \hline \text{Turn-Off Delay Time} & t_{d(ori)} \\ \hline \text{Rise Time} & t_f \\ \hline \text{Turn-Off Delay Time} & t_{d(ori)} \\ \hline \text{Rise Time} & t_f \\ \hline \text{Turn-Off Delay Time} & t_{d(ori)} \\ \hline \text{Rise Time} & t_f \\ \hline \text{Turn-Off Delay Time} & t_{d(ori)} \\ \hline \text{Rise Time} & t_f \\ \hline \text{Turn-Off Delay Time} & t_{d(ori)} \\ \hline \text{Rise Time} & t_f \\ \hline \text{Drain-Source Body Diode Characteristics} \\ \hline \text{Continuous Source-Drain Diode Current} & l_{SM} \\ \hline \text{Body Diode Reverse Recovery Time} & t_{tr} \\ \hline \text{Body Diode Reverse Recovery Fall Time} & t_{tr} \\ \hline \text{Rise Diode Reverse Recovery Charge} & Q_{rr} \\ \hline \text{Reverse Recovery Fall Time} & t_a \\ \hline \text{Rise Pall Time} & t_{tr} \\ \hline \text{Rise Time} & t_$	Forward Transconductance ^a	9 _{fs}	$V_{DS} = -10 \text{ V}, I_D = -3.8 \text{ A}$	-	11	-	S			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Dynamic ^b									
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Input Capacitance	C _{iss}		-	770	-				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Output Capacitance	C _{oss}	$V_{DS} = -10 \text{ V}, V_{GS} = 0 \text{ V}, f = 1 \text{ MHz}$	-	90	-	pF			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Reverse Transfer Capacitance	C _{rss}		-	81	-				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Total Cata Charge	0	$V_{DS} = -10 \text{ V}, V_{GS} = -8 \text{ V}, I_{D} = -4.9 \text{ A}$	-	16.3	25	nC			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Total Gate Charge	Q _g		-	9.5	14.5				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Gate-Source Charge		$V_{DS} = -10 \text{ V}, V_{GS} = -4.5 \text{ V}, I_{D} = -4.9 \text{ A}$	-	1.4	-				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Gate-Drain Charge			-	2.3	-				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Gate Resistance	R_g	f = 1 MHz	1	5.1	10	Ω			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Turn-On Delay Time	t _{d(on)}		-	15	25				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Rise Time	t _r		-	16	25				
Turn-On Delay Time $t_{d(on)}$ Rise Time t_r $V_{DD} = -10 \text{ V}, \text{ R}_L = 2.6 \Omega$ $I_D \cong -3.9 \text{ A}, \text{ V}_{GEN} = -8 \text{ V}, \text{ R}_g = 1 \Omega$ $- 26 40$ $- 10 15$ $- 26 40$ $- 10 15$ $- 26 40$ $- 10 15$ $- 26 40$ $- 10 15$ $- 26 40$ $- 10 15$ $- 26 40$ $- 10 15$ $- 26 40$ $- 10 15$ $- 26 40$ $- 10 15$ $- 10 15$ $- 26 40$ $- 10 15$ $-$	Turn-Off Delay Time	t _{d(off)}		-	30	45				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Fall Time	t _f		-	10	15				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Turn-On Delay Time	t _{d(on)}		1	7	15	115			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Rise Time	t _r	V_{DD} = -10 V, R_L = 2.6 Ω		12	20				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Turn-Off Delay Time	t _{d(off)}	$I_D\cong$ -3.9 A, $V_{GEN}=$ -8 V, $R_g=$ 1 Ω	1	26	40	<u> </u>			
Continuous Source-Drain Diode Current I_S $T_C = 25 ^{\circ}C$ 4.5 A Pulse Diode Forward Current I_{SM} 15 Body Diode Voltage V_{SD} $I_S = -3.9 \text{A}, V_{GS} = 0 \text{V}$ 0.9 -1.2 V Body Diode Reverse Recovery Time t_{rr} Body Diode Reverse Recovery Charge Q_{rr} Reverse Recovery Fall Time t_a $I_F = -3.9 \text{A}, \text{dI/dt} = 100 \text{A/µs}, T_J = 25 ^{\circ}C$ - 5.5 12 nC	Fall Time	t _f	<u>] </u>		10	15				
Pulse Diode Forward Current I_{SM} $ -15$ Body Diode Voltage V_{SD} $I_S = -3.9 \text{ A}, V_{GS} = 0 \text{ V}$ $ -0.9$ -1.2 V Body Diode Reverse Recovery Time t_{rr} $ 13$ 25 ns Body Diode Reverse Recovery Charge Q_{rr} Reverse Recovery Fall Time t_a $I_F = -3.9 \text{ A}, \text{ dI/dt} = 100 \text{ A/µs}, T_J = 25 °C$ $ -$	Drain-Source Body Diode Characterist	ics								
Pulse Diode Forward Current I_{SM} $ -15$ $ -15$ $ -15$ $ -15$ $ -15$ $ -$	Continuous Source-Drain Diode Current	I _S	$T_C = 25 ^{\circ}C$	ı	-	-4.5	Δ			
	Pulse Diode Forward Current	I _{SM}		-	-	-15	^			
Body Diode Reverse Recovery Charge Q_{rr} $I_F = -3.9 \text{ A}$, $dI/dt = 100 \text{ A/}\mu\text{s}$, $T_J = 25 ^{\circ}\text{C}$ $- 5.5$ 12 nC $- 7.5$ $- 18$	Body Diode Voltage	V_{SD}	$I_S = -3.9 \text{ A}, V_{GS} = 0 \text{ V}$	-	-0.9	-1.2	V			
Reverse Recovery Fall Time t_a $I_F = -3.9 \text{ A}, \text{ dI/dt} = 100 \text{ A/}\mu\text{s}, I_J = 25 \text{ °C}$ $-$ 7.5 $-$ ns	Body Diode Reverse Recovery Time	t _{rr}		-	13	25	ns			
Reverse Recovery Fall Time t _a - 7.5 - ns	Body Diode Reverse Recovery Charge	Q_{rr}		-	5.5	12	nC			
Reverse Recovery Rise Time t _b - 5.5 -	Reverse Recovery Fall Time	ta	$[1, -0.8 \text{ A}, \text{ al/at} - 100 \text{ A/} \mu \text{s}, \text{ 1}] = 25 \text{ C}$	-	7.5	-	ns			
	Reverse Recovery Rise Time	t _b		-	5.5	-				

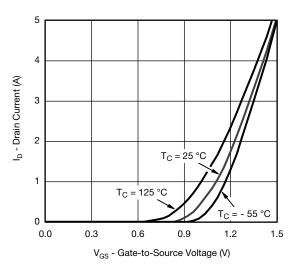
Notes

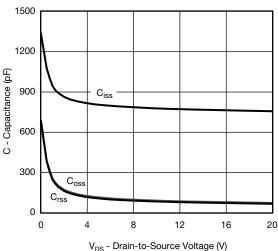

- a. Pulse test; pulse width $\leq 300~\mu s,$ duty cycle $\leq 2~\%.$
- b. Guaranteed by design, not subject to production testing.

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

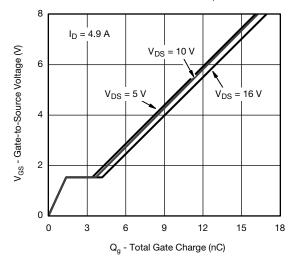



Gate Current vs. Gate-to-Source Voltage

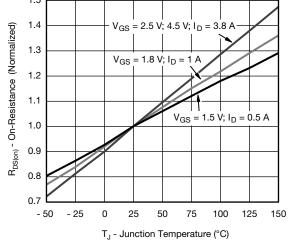

Output Characteristics


On-Resistance vs. Drain Current and Gate Voltage

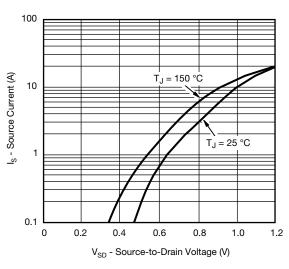
Gate Current vs. Gate-to-Source Voltage

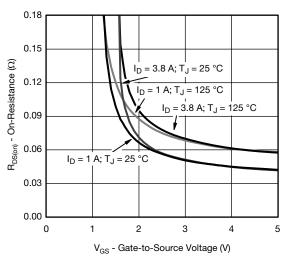


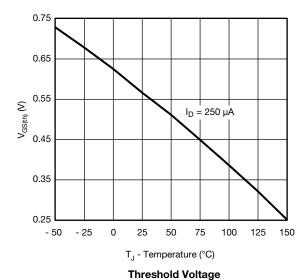
Transfer Characteristics

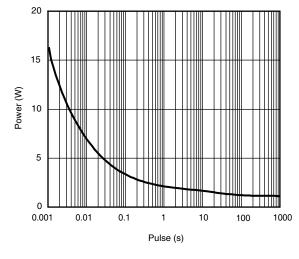


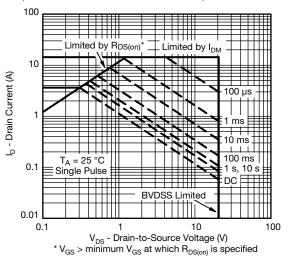
Capacitance

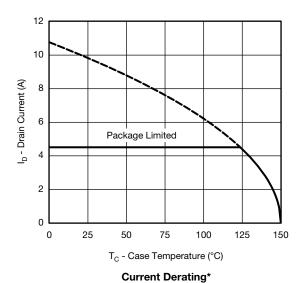


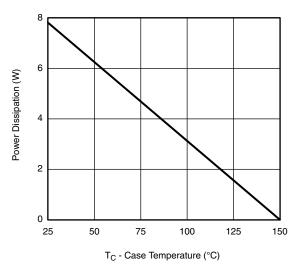

Gate Charge


On-Resistance vs. Junction Temperature

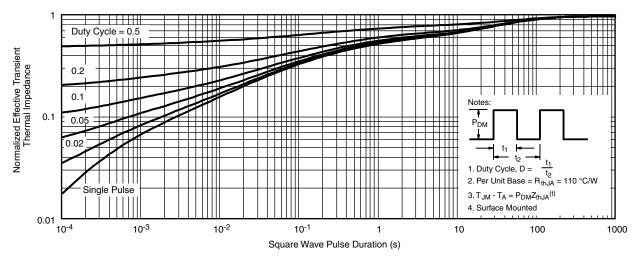

Source-Drain Diode Forward Voltage

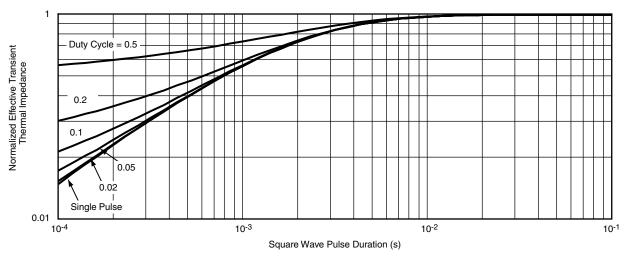

On-Resistance vs. Gate-to-Source Voltage


Single Pulse Power, Junction-to-Ambient



Safe Operating Area, Junction-to-Ambient




Power Derating

^{*} The power dissipation P_D is based on $T_{J(max.)}$ = 150 °C, using junction-to-case thermal resistance, and is more useful in settling the upper dissipation limit for cases where additional heatsinking is used. It is used to determine the current rating, when this rating falls below the package limit.

Normalized Thermal Transient Impedance, Junction-to-Ambient

Normalized Thermal Transient Impedance, Junction-to-Case

Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and reliability data, see www.vishay.com/ppg262936.

Legal Disclaimer Notice

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Hyperlinks included in this datasheet may direct users to third-party websites. These links are provided as a convenience and for informational purposes only. Inclusion of these hyperlinks does not constitute an endorsement or an approval by Vishay of any of the products, services or opinions of the corporation, organization or individual associated with the third-party website. Vishay disclaims any and all liability and bears no responsibility for the accuracy, legality or content of the third-party website or for that of subsequent links.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.