
Vishay Siliconix

Power MOSFET

PRODUCT SUMMARY						
V _{DS} (V)	-200					
R _{DS(on)} (Ω)	V _{GS} = -10 V 0.80					
Q _g max. (nC)	29					
Q _{gs} (nC)	5.4					
Q _{gd} (nC)	15					
Configuration	Single					

FEATURES

- Surface-mount
- Available in tape and reel
- Dynamic dV/dt rating
- Repetitive avalanche rated
- P-channel
- Fast switching
- Ease of paralleling
- Material categorization: for definitions of compliance please see www.vishay.com/doc?99912

Note

This datasheet provides information about parts that are RoHS-compliant and / or parts that are non RoHS-compliant. For example, parts with lead (Pb) terminations are not RoHS-compliant. Please see the information / tables in this datasheet for details

DESCRIPTION

Third generation power MOSFETs from Vishay provide the designer with the best combination of fast switching, ruggedized device design, low on-resistance and cost-effectiveness.

The D²PAK (TO-263) is a surface-mount power package capable of accommodating die size up to HEX-4. It provides the highest power capability and the lowest possible on-resistance in any existing surface-mount package. The D^2PAK (TO-263) is suitable for high current applications because of its low internal connection resistance and can dissipate up to 2.0 W in a typical surface mount application.

ORDERING INFORMATION							
Package	D ² PAK (TO-263)	D ² PAK (TO-263)					
Lead (Pb)-free and Halogen-free	SiHF9630S-GE3	SiHF9630STRL-GE3 ^a					
Lead (Pb)-free	IRF9630SPbF	IRF9630STRLPbF ^a					
	IRF9630STRRPBF	-					

Note a. See device orientation

ABSOLUTE MAXIMUM RATINGS (T _C	= 25 °C, unl	ess otherwis	se noted)				
PARAMETER	SYMBOL	LIMIT	UNIT				
Drain-Source Voltage			V _{DS}	-200	Ň		
Gate-Source Voltage	V _{GS}	± 20	V				
Continuous Drain Current	V_{GS} at -10 V $T_{C} = 25 °C$ $T_{C} = 100 °C$			-6.5			
Continuous Drain Current	VGS at -10 V	T _C = 100 °C	I _D	-4.0	А		
Pulsed Drain Current ^a			I _{DM}	-26	1		
Linear Derating Factor				0.59	W/°C		
Linear Derating Factor (PCB mount) e		0.025	W/ C				
Single Pulse Avalanche Energy ^b	E _{AS}	500	mJ				
Avalanche Current ^a	I _{AR} -6.4		A				
Repetitive Avalanche Energy ^a	E _{AR}	7.4	mJ				
Maximum Power Dissipation	25 °C	D	74	w			
Maximum Power Dissipation (PCB mount) e	ower Dissipation (PCB mount) e T _A = 25 $^{\circ}$ C		PD	3.0	vv		
Peak Diode Recovery dV/dt ^c	dV/dt	-5.0	V/ns				
Operating Junction and Storage Temperature Range	T _J , T _{stg}	-55 to +150	°C				
Soldering Recommendations (Peak temperature) ^d	10 s		300	°C			

Notes

b. Repetitive rating; pulse width limited by maximum junction temperature (see fig. 11)

 V_{DD} = -50 V, starting T_J = 25 °C, L = 17 mH, R_g = 25 Ω , I_{AS} = -6.5 A (see fig. 12) I_{SD} \leq -6.5 A, dI/dt \leq 120 A/µs, V_{DD} \leq V_{DS}, T_J \leq 150 °C 1.6 mm from case C.

d.

e.

f. When mounted on 1" square PCB (FR-4 or G-10 material)

S21-0904-Rev. E, 30-Aug-2021

1

RoHS HALOGEN FREE

Vishay Siliconix

THERMAL RESISTANCE RATINGS							
PARAMETER	SYMBOL	TYP.	MAX.	UNIT			
Maximum Junction-to-Ambient	R _{thJA}	-	62				
Maximum Junction-to-Ambient (PCB mount) ^a	R _{thJA}	-	40	°C/W			
Maximum Junction-to-Case (Drain)	R _{thJC}	-	1.7				

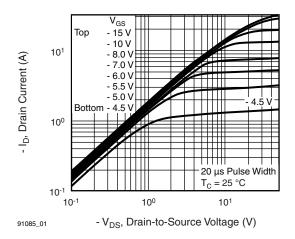
Note

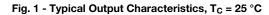
a. When mounted on 1" square PCB (FR-4 or G-10 material)

PARAMETER	SYMBOL	TES	MIN.	TYP.	MAX.	UNIT	
Static							<u> </u>
Drain-Source Breakdown Voltage	V _{DS}	V _{GS}	V _{GS} = 0, I _D = -250 μA			-	V
V _{DS} Temperature Coefficient	$\Delta V_{DS}/T_{J}$	Referenc	e to 25 °C, I _D = -1 mA	-	-0.24	-	V/°C
Gate-Source Threshold Voltage	V _{GS(th)}	V _{DS} =	- V _{GS} , I _D = -250 μΑ	-2.0	-	-4.0	V
Gate-Source Leakage	I _{GSS}		V _{GS} = ± 20 V	-	-	± 100	nA
		V _{DS} =	-200 V, V _{GS} = 0 V	-	-	- 100	μA
Zero Gate Voltage Drain Current	I _{DSS}	V _{DS} = -160	V, V _{GS} = 0 V, T _J = 125 °C	-	-	-500	
Drain-Source On-State Resistance	R _{DS(on)}	V _{GS} = -10 V	I _D = -3.9 A ^b	-	-	0.80	Ω
Forward Transconductance	9 _{fs}	V _{DS} =	-50 V, I _D = -3.9 A ^b	2.8	-	-	S
Dynamic							
Input Capacitance	C _{iss}		$V_{GS} = 0 V$,	-	700	-	
Output Capacitance	C _{oss}		$V_{DS} = -25 V,$	-	200	-	pF
Reverse Transfer Capacitance	C _{rss}	f = 1	.0 MHz, see fig. 5	-	40	-	
Total Gate Charge	Qg			-	-	29	nC
Gate-Source Charge	Q _{gs}	V _{GS} = -10 V	I _D = -6.5 A, V _{DS} = -160 V, see fig. 6 and 13 ^b	-	-	5.4	
Gate-Drain Charge	Q _{gd}		see lig. 6 and 15 °		-	15	-
Turn-On Delay Time	t _{d(on)}	V _{DD} = -100 V, I _D = -6.5 A,		-	12	-	- ns
Rise Time	t _r			-	27	-	
Turn-Off Delay Time	t _{d(off)}	$R_g = 12 \Omega$,	-	28	-		
Fall Time	t _f		-	24	-		
Internal Drain Inductance	L _D	Between lead 6 mm (0.25")	-	4.5	-		
Internal Source Inductance	L _S	package and die contact	center of	-	7.5	-	nH
Gate Input Resistance	Rg	f = '	1 MHz, open drain	0.6	-	3.7	Ω
Drain-Source Body Diode Characteristic	S	<u>.</u>					
Continuous Source-Drain Diode Current	I _S	MOSFET sym showing the	MOSFET symbol showing the integral reverse p - n junction diode		-	-6.5	•
Pulsed Diode Forward Current ^a	I _{SM}	0			-	-26	A
Body Diode Voltage	V _{SD}	T _J = 25 °C	, I _S = -6.5 A, V _{GS} = 0 V ^b	-	-	-6.5	V
Body Diode Reverse Recovery Time	t _{rr}	T 05 00 1	T _J = 25 °C, I _F = -6.5 A, dl/dt = 100 A/μs ^b		200	300	ns
Body Diode Reverse Recovery Charge	Q _{rr}	$I_{\rm J} = 25$ °C, $I_{\rm F}$	-	1.9	2.9	μC	
Forward Turn-On Time	t _{on}	Intrinsic tu	urn-on time is negligible (turn	-on is dor	ninated b	y L _S and	L _D)

Notes

a. Repetitive rating; pulse width limited by maximum junction temperature (see fig. 11)


b. Pulse width $\leq 300~\mu s;~duty~cycle \leq 2~\%$


2

Vishay Siliconix

TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)

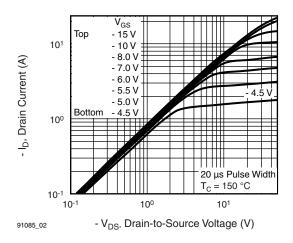
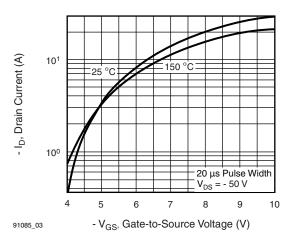



Fig. 2 - Typical Output Characteristics, $T_C = 150 \ ^\circ C$

S21-0904-Rev. E, 30-Aug-2021

R_{DS(on)}, Drain-to-Source On Resistance 3.0 I_D = - 6.5 A = - 10 V V_{GS} 2.5 2.0 (Normalized) 1.5 1.0 0.5 0.0 0 - 60 - 40 - 20 20 40 60 80 100 120 140 160 T_.I, Junction Temperature (°C) 91085_04

Fig. 4 - Normalized On-Resistance vs. Temperature

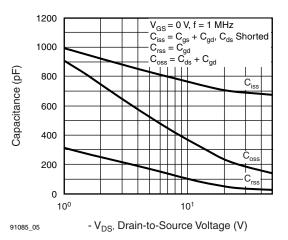


Fig. 5 - Typical Capacitance vs. Drain-to-Source Voltage

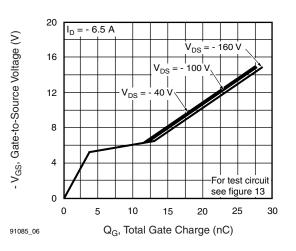


Fig. 6 - Typical Gate Charge vs. Gate-to-Source Voltage

Document Number: 91085

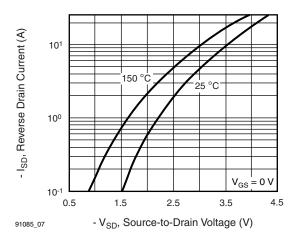


Fig. 7 - Typical Source-Drain Diode Forward Voltage

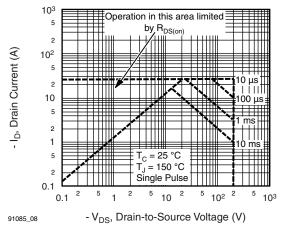


Fig. 8 - Maximum Safe Operating Area

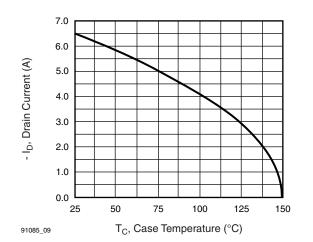


Fig. 9 - Maximum Drain Current vs. Case Temperature

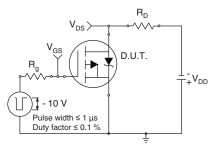


Fig. 10a - Switching Time Test Circuit

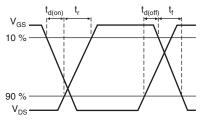


Fig. 10b - Switching Time Waveforms

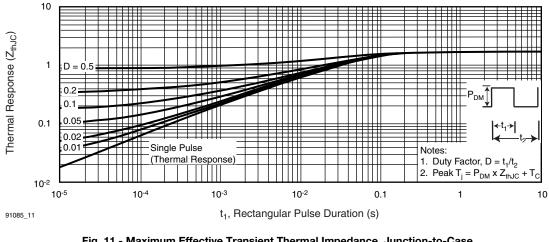


Fig. 11 - Maximum Effective Transient Thermal Impedance, Junction-to-Case

S21-0904-Rev. E, 30-Aug-2021

4 For technical questions, contact: <u>hvm@vishay.com</u>

THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000

IRF9630S, SiHF9630S

Vishay Siliconix

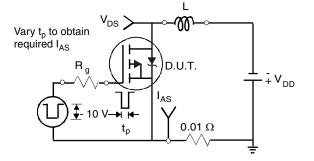


Fig. 12a - Unclamped Inductive Test Circuit

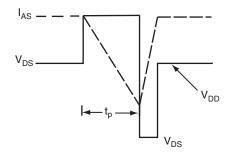


Fig. 12b - Unclamped Inductive Waveforms

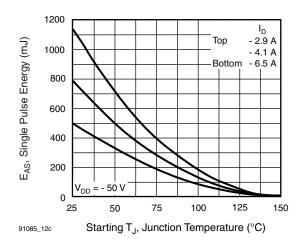
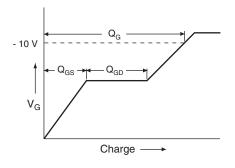



Fig. 12c - Maximum Avalanche Energy vs. Drain Current

Vishay Siliconix

Fig. 13a - Basic Gate Charge Waveform

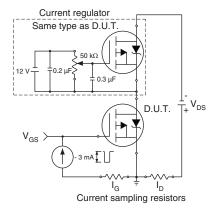
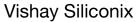
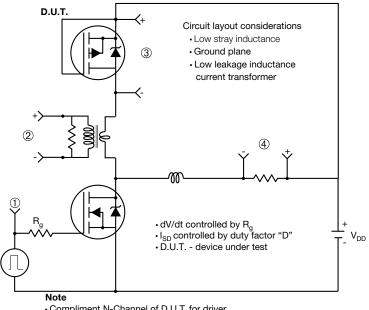



Fig. 13b - Gate Charge Test Circuit


5

For technical questions, contact: <u>hvm@vishay.com</u> THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT <u>www.vishay.com/doc?91000</u>

Peak Diode Recovery dV/dt Test Circuit

· Compliment N-Channel of D.U.T. for driver

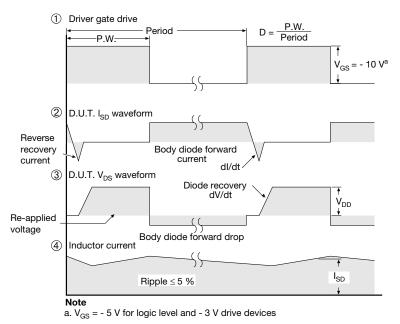


Fig. 14 - For P-Channel

Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and reliability data, see www.vishay.com/ppg?91085.

S21-0904-Rev. E, 30-Aug-2021

For technical questions, contact: hvm@vishay.com THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000

Package Information

H

B

A1

Gauge plane

L3

Detail "A" Rotated 90° CW scale 8:1

0° tọ 8°

Vishay Siliconix

Seating plane

TO-263AB (HIGH VOLTAGE)

3 /4

A

н

∕5∖

Detail A

(Datum A)

D

<u>4</u> Lī

$A \leftarrow i$ $2 \times b^{2} \leftarrow 2 \times b$ $(-) \leftarrow 2 \times b^{2} \leftarrow -2 \times b$ $(-) \leftarrow 0.010 \otimes A \otimes B$ $(/) \pm 0.004 \otimes B$ $(-) \leftarrow 0.010 \otimes A \otimes B$ $(-) \leftarrow 0.010 \otimes B \otimes B$ $(-) \leftarrow 0.010 \otimes$										
	MILLIMETERS INCH		HES			MILLIMETERS		INCHES		
DIM.	MIN.	MAX.	MIN.	MAX.		DIM.	MIN.	MAX.	MIN.	MAX.
А	4.06	4.83	0.160	0.190		D1	6.86	-	0.270	-
A1	0.00	0.25	0.000	0.010		E	9.65	10.67	0.380	0.420
b	0.51	0.99	0.020	0.039		E1	6.22	-	0.245	-
b1	0.51	0.89	0.020	0.035		е	2.54	2.54 BSC 0.100 E) BSC
b2	1.14	1.78	0.045	0.070		Н	14.61	15.88	0.575	0.625
b3	1.14	1.73	0.045	0.068		L	1.78	2.79	0.070	0.110
С	0.38	0.74	0.015	0.029		L1	-	1.65	-	0.066
c1	0.38	0.58	0.015	0.023		L2	-	1.78	-	0.070
c2	1.14	1.65	0.045	0.065		L3	0.25	BSC	0.010) BSC
D	8.38	9.65	0.330	0.380		L4	4.78	5.28	0.188	0.208
ECN: S-82 DWG: 597	110-Rev. A, 1)	15-Sep-08								

Α

Notes

- 1. Dimensioning and tolerancing per ASME Y14.5M-1994.
- 2. Dimensions are shown in millimeters (inches).
- 3. Dimension D and E do not include mold flash. Mold flash shall not exceed 0.127 mm (0.005") per side. These dimensions are measured at the outmost extremes of the plastic body at datum A.
- 4. Thermal PAD contour optional within dimension E, L1, D1 and E1.
- 5. Dimension b1 and c1 apply to base metal only.
- 6. Datum A and B to be determined at datum plane H.
- 7. Outline conforms to JEDEC outline to TO-263AB.

RECOMMENDED MINIMUM PADS FOR D²PAK: 3-Lead

Recommended Minimum Pads Dimensions in Inches/(mm)

Return to Index

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Hyperlinks included in this datasheet may direct users to third-party websites. These links are provided as a convenience and for informational purposes only. Inclusion of these hyperlinks does not constitute an endorsement or an approval by Vishay of any of the products, services or opinions of the corporation, organization or individual associated with the third-party website. Vishay disclaims any and all liability and bears no responsibility for the accuracy, legality or content of the third-party website or for that of subsequent links.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.