
SiHP11N80AE

Vishay Siliconix

E Series Power MOSFET

PRODUCT SUMMARY		
V _{DS} (V) at T _J max.	85	50
R _{DS(on)} typ. (Ω) at 25 °C	$V_{GS} = 10 V$	0.391
Q _g max. (nC)	4	2
Q _{gs} (nC)	6	3
Q _{gd} (nC)	1	2
Configuration	Sin	gle

FEATURES

- Low figure-of-merit (FOM) Ron x Qg
- Low effective capacitance (C_{iss})
- · Reduced switching and conduction losses
- Ultra low gate charge (Qg)
- Avalanche energy rated (UIS)
- Integrated Zener diode ESD protection
- Material categorization: for definitions of compliance please see <u>www.vishay.com/doc?99912</u>

APPLICATIONS

- · Server and telecom power supplies
- Switch mode power supplies (SMPS)
- Power factor correction power supplies (PFC)
- Lighting
 - High-intensity discharge (HID)
 - Fluorescent ballast lighting
- Industrial
 - Welding
 - Induction heating
 - Motor drives
 - Battery chargers
 - Renewable energy

ORDERING INFORMATION	
Package	TO-220AB
Lead (Pb)-free and halogen-free	SiHP11N80AE-GE3

ABSOLUTE MAXIMUM RATINGS	(T _C = 25 °C, un	less otherwis	se noted)			
PARAMETER			SYMBOL	LIMIT	UNIT	
Drain-source voltage			V _{DS}	800	v	
Gate-source voltage		V _{GS}	± 30	v		
Continuous drain surrant (T 150 °C)	V at 10 V	$T_{\rm C} = 25 \ ^{\circ}{\rm C}$ $T_{\rm C} = 100 \ ^{\circ}{\rm C}$		8		
Continuous drain current ($T_J = 150 \ ^\circ C$)	VGS at 10 V	T _C = 100 °C	I _D	5	А	
Pulsed drain current ^a			I _{DM}	22		
Linear derating factor				0.6	W/°C	
Single pulse avalanche energy ^b			E _{AS}	88	mJ	
Maximum power dissipation			PD	78	W	
Operating junction and storage temperature ra	nge		T _J , T _{stg}	-55 to +150	°C	
Drain-source voltage slope		T _J = 125 °C	alı . (alt	70	\//==	
Reverse diode dv/dt d		•	dv/dt	2	V/ns	
Soldering recommendations (peak temperature	e) c	For 10 s		260	°C	

Notes

a. Repetitive rating; pulse width limited by maximum junction temperature

b. V_{DD} = 140 V, starting T_J = 25 °C, L = 28.2 mH, R_a = 25 Ω , I_{AS} = 2.5 A

c. 1.6 mm from case

d. $I_{SD} \leq I_D$, di/dt = 100 A/µs, starting T_J = 25 °C

S19-0956-Rev. A, 11-Nov-2019

1

Document Number: 92294

HALOGEN

FREE

www.vishay.com

SHA

Vishay Siliconix

Static Vois Vois Vois Vois 0 - - V Orain-source breakdown voltage Vois MVps (Tight of the source threshold voltage (N) NVps (Tight of the source threshold voltage (N) NVps (Tight of the source threshold voltage (N) Visit of the source the source threshold voltage (N) Visit	THERMAL RESISTANCE RAT	INGS							
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	PARAMETER	SYMBOL	TYP.		MAX.			UNIT	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Maximum junction-to-ambient	R _{thJA}	-		62			°C ///	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Maximum junction-to-case (drain)	R _{thJC}	-		1.6			C/ W	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$									
Static Vos V _{GS} = 0 V, I _D = 250 µA 800 - - V Drain-source breakdown voltage $\Delta V_{DS} T_J$ Reference to 25 °C, I _D = 1 mA - 0.8 - V/°C Gate-source threshold voltage (N) V_{SSHV} $V_{DS} = V_{SS, I_D} = 250 µA$ 2 - 4 V/°C Gate-source leakage I_{OSS} $V_{OS} = 20 V$ - - ± 10 μ A Case source leakage I_{OSS} $V_{OS} = 40 V$, $V_{GS} = 0 V$ - - ± 10 μ A Zero gate voltage drain current I_{DSS} $V_{OS} = 40 V$, $V_{GS} = 0 V$, $T_J = 125 °C$ - 1 μ A Drain-source on-state resistance $R_{DS(or)}$ $V_{GS} = 10 V$ $I_D = 5.5 A$ - 0.391 0.450 Ω Dynamic Input capacitance C_{Gas} $V_{DS} = 0 V$, $I_D = 5.5 A$ - 0.391 0.450 Ω Reverse transfer capacitance, energy C_{oten} $V_{DS} = 0 V$, $V_{DS} = 0 V$, $V_{DS} = 0 V$ - 162 - - 277	SPECIFICATIONS (T _J = 25 $^{\circ}$ C, t	unless otherwi	se noted)						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	PARAMETER	SYMBOL	TES	T CONDIT	IONS	MIN.	TYP.	MAX.	UNIT
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Static	•				•	•	•	•
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Drain-source breakdown voltage	V _{DS}	V _{GS} =	= 0 V, I _D = 2	250 µA	800	-	-	V
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	V _{DS} temperature coefficient	$\Delta V_{DS}/T_{J}$	Referenc	e to 25 °C,	I _D = 1 mA	-	0.8	-	V/°C
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Gate-source threshold voltage (N)	V _{GS(th)}	V _{DS} =	$V_{GS}, I_D = 2$	250 µA	2	-	4	V
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Osta assuma laskana	1	, v	$V_{\rm GS} = \pm 20$	V	-	-	± 10	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Gate-source leakage	IGSS	, v	V _{GS} = ± 30	V	-	-	± 50	μΑ
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Zous anto usltana dusia sumant	1	V _{DS} =	800 V, V _G	_S = 0 V	-	-	1	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Zero gale voltage drain current	IDSS	V _{DS} = 640 V	, V _{GS} = 0 V	∕, T _J = 125 °C	-	-	10	μΑ
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Drain-source on-state resistance	R _{DS(on)}	V _{GS} = 10 V	١ _c	₀ = 5.5 A	-	0.391	0.450	Ω
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Forward transconductance ^a		V _{DS} =	= 30 V, I _D =	= 5.5 A	-	2.9	-	S
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Dynamic	•					•	•	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Input capacitance	C _{iss}	V _{DS} = 100 V,		-	804	-		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Output capacitance	C _{oss}			-	34	-		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Reverse transfer capacitance	C _{rss}		f = 1 MHz	1	-	5	-	
$ \begin{array}{c c c c c c c } \hline \text{Effective output capacitance, time} & C_{o(tr)} & \hline & & & & & & & & & & & & & & & & & $	Effective output capacitance, energy related ^a	C _{o(er)}		(to 400 V		-	27	-	pF
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Effective output capacitance, time related ^b	C _{o(tr)}	$v_{\rm DS} = 0$	7 to 480 V,	$v_{GS} = 0 v$	-	162	-	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Total gate charge	Qg				-	28	42	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Gate-source charge	Q _{gs}	V _{GS} = 10 V	$I_{\rm D} = 5.5$	A, V _{DS} = 640 V	-	6	-	nC
Rise timetrVDD = 640 V, ID = 5.5 A, VGS = 10 V, Rg = 9.1 Ω -1530nsFall timetfFall timetfGate input resistanceRgf = 1 MHz, open drain0.71.53 Ω Drain-Source Body Diode CharacteristicsContinuous source-drain diode currentIsMOSFET symbol showing the integral reverse p - n junction diode8ADiode forward currentIsMOSFET symbol showing the integral reverse p - n junction diode22XDiode forward voltageVsDTJ = 25 °C, Is = 5.5 A, VGS = 0 V1.2VReverse recovery timetrrTJ = 25 °C, IF = IS = 5.5 A, di/dt = 100 A/µs, VR = 25 V-2.95.8µC	Gate-drain charge					-	12	-	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Turn-on delay time	t _{d(on)}				-	13	26	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Rise time		V _{DD} =	640 V, I _D =	= 5.5 A,	-	15	30	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Turn-off delay time	t _{d(off)}	V _{GS} =	= 10 V, R _g =	= 9.1 Ω	-	25	50	ns
Drain-Source Body Diode CharacteristicsContinuous source-drain diode currentIsMOSFET symbol showing the integral reverse $p - n$ junction diode8APulsed diode forward currentIsMIsMTJ = 25 °C, Is = 5.5 A, VGS = 0 V22ADiode forward voltageVsDTJ = 25 °C, Is = 5.5 A, VGS = 0 V1.2VReverse recovery timetrrTJ = 25 °C, Is = 5.5 A, VGS = 0 V1.2VTJ = 25 °C, Is = 5.5 A, VGS = 0 V278556nsReverse recovery chargeQrrTJ = 25 °C, IF = IS = 5.5 A, di/dt = 100 A/µs, VR = 25 V-2.95.8µC	Fall time					-	27	54	
Continuous source-drain diode currentIsMOSFET symbol showing the integral reverse p - n junction diode8APulsed diode forward currentIsmIsm $T_J = 25 ^{\circ}C$, Is = 5.5 A, VGS = 0 V22Diode forward voltageVsp $T_J = 25 ^{\circ}C$, Is = 5.5 A, VGS = 0 V1.2VReverse recovery time t_{rr} $T_J = 25 ^{\circ}C$, IF = Is = 5.5 A, di/dt = 100 A/µs, VR = 25 V-2.95.8µC	Gate input resistance	R _g	f = 1	MHz, oper	n drain	0.7	1.5	3	Ω
Continuous source-drain diode currentis is showing the integral reverse p - n junction diodeshowing the integral reverse p - n junction diodeAPulsed diode forward current I_{SM} I_{SM} $T_J = 25 ^{\circ}C$, $I_S = 5.5 $ A, $V_{GS} = 0 $ V22ADiode forward voltage V_{SD} $T_J = 25 ^{\circ}C$, $I_S = 5.5 $ A, $V_{GS} = 0 $ V1.2VReverse recovery time t_{rr} $T_J = 25 ^{\circ}C$, $I_F = I_S = 5.5 $ A, di/dt = 100 A/µs, $V_R = 25 $ V2.95.8µC	Drain-Source Body Diode Characterist	cs							
Pulsed diode forward currentIIIntegral rotationII22Diode forward voltage V_{SD} $T_J = 25 ^{\circ}C$, $I_S = 5.5 ^{\circ}A$, $V_{GS} = 0 ^{\circ}V$ 1.2 V Reverse recovery time t_{rr} $T_J = 25 ^{\circ}C$, $I_F = I_S = 5.5 ^{\circ}A$, $di/dt = 100 ^{\circ}A/\mu_S$, $V_R = 25 ^{\circ}V$ 2.95.8 μC	Continuous source-drain diode current	١ _S	-	bol		-	-	8	
Reverse recovery time t_{rr} $T_J = 25 \text{ °C}, I_F = I_S = 5.5 \text{ A},$ - 278 556 ns Reverse recovery charge Q_{rr} $di/dt = 100 \text{ A/}\mu\text{s}, V_R = 25 \text{ V}$ - 2.9 5.8 μC	Pulsed diode forward current	I _{SM}				-	-	22	A
Reverse recovery time t_{rr} $T_J = 25 \text{ °C}, I_F = I_S = 5.5 \text{ A},$ - 278 556 ns Reverse recovery charge Q_{rr} $di/dt = 100 \text{ A/}\mu\text{s}, V_R = 25 \text{ V}$ - 2.9 5.8 μC	Diode forward voltage	V _{SD}	T _J = 25 °C	, I _S = 5.5 A	A, V _{GS} = 0 V	-	-	1.2	V
Reverse recovery charge Q_{rr} $T_J = 25 {}^{\circ}C, I_F = I_S = 5.5 A,$ - 2.9 5.8 μC	Reverse recovery time					-	278	556	ns
	Reverse recovery charge		$T_J = 25$	°C, I _F = I _S	= 5.5 A,	-	2.9	5.8	μC
	Reverse recovery current		u/ul =	100 Avµs, \	$v_{\rm R} = 20 v$	-	17	-	

Notes

a. $C_{oss(er)}$ is a fixed capacitance that gives the same energy as C_{oss} while V_{DS} is rising from 0 V to 480 V V_{DSS}

b. $C_{oss(tr)}$ is a fixed capacitance that gives the same charging time as C_{oss} while V_{DS} is rising from 0 V to 480 V V_{DSS}

2 For technical questions, contact: <u>hvm@vishay.com</u>

THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000

Vishay Siliconix

TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)

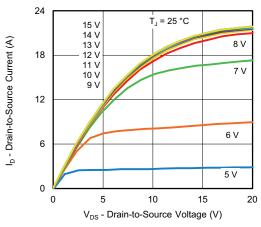


Fig. 1 - Typical Output Characteristics

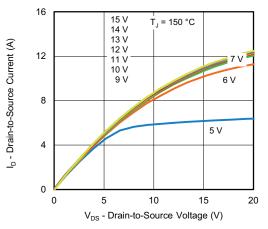


Fig. 2 - Typical Output Characteristics

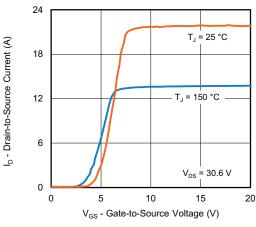


Fig. 3 - Typical Transfer Characteristics

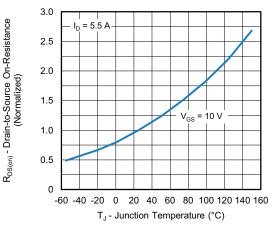


Fig. 4 - Normalized On-Resistance vs. Temperature

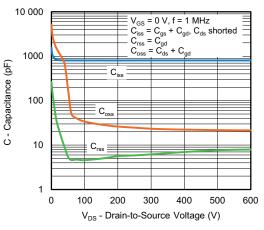


Fig. 5 - Typical Capacitance vs. Drain-to-Source Voltage

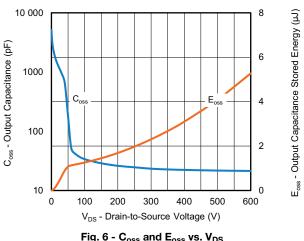


Fig. 6 - Coss and Eoss vs. VDS

S19-0956-Rev. A, 11-Nov-2019

3 For technical questions, contact: hvm@vishay.com

THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000

SiHP11N80AE

Vishay Siliconix

10

8

6

4

2

0

1.2

1.1

0.9

0.8

-60 -40 -20

0

V_{DS} - Drain-to-Source Breakdown Voltage

(Normalized) 1

25

50

75

T_C - Case Temperature (°C)

Fig. 10 - Maximum Drain Current vs. Case Temperature

100

125

 $I_D = 1 \text{ mA}$

20 40 60 80 100 120 140 160

T_{.1} - Junction Temperature (°C)

Fig. 11 - Temperature vs. Drain-to-Source Voltage

150

l_D - Drain Current (A)

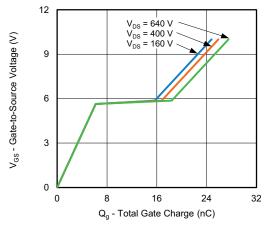


Fig. 7 - Typical Gate Charge vs. Gate-to-Source Voltage

Fig. 8 - Typical Source-Drain Diode Forward Voltage

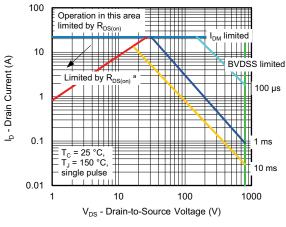


Fig. 9 - Maximum Safe Operating Area

Note

a. V_{GS} > minimum V_{GS} at which $R_{DS(on)}$ is specified

S19-0956-Rev. A, 11-Nov-2019

4

SiHP11N80AE

Vishay Siliconix



Fig. 12 - Normalized Transient Thermal Impedance, Junction-to-Case

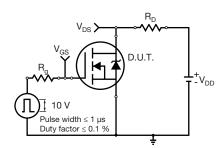


Fig. 13 - Switching Time Test Circuit

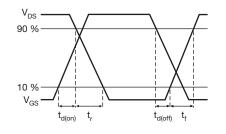


Fig. 14 - Switching Time Waveforms

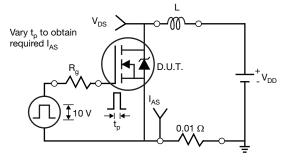


Fig. 15 - Unclamped Inductive Test Circuit

S19-0956-Rev. A, 11-Nov-2019

5 For technical questions, contact: hvm@vishay.com

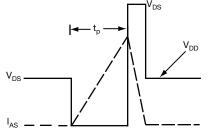


Fig. 16 - Unclamped Inductive Waveforms

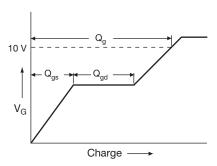
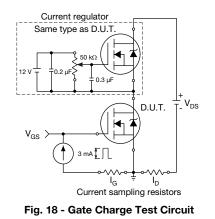



Fig. 17 - Basic Gate Charge Waveform

Peak Diode Recovery dv/dt Test Circuit

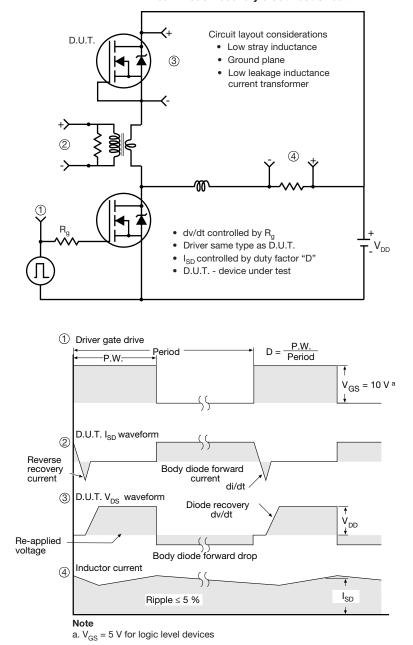
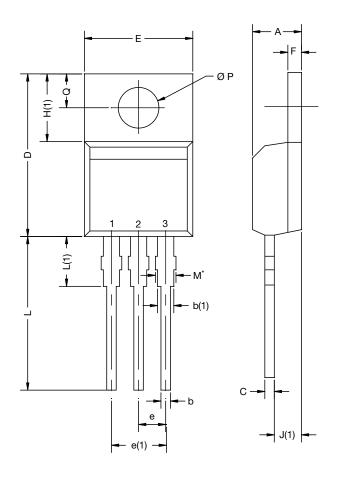


Fig. 19 - For N-Channel

Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package / tape drawings, part marking, and reliability data, see www.vishay.com/ppg?92294.


S19-0956-Rev. A, 11-Nov-2019	6	Document Number: 92294
	For technical questions, contact: <u>hvm@vishay.com</u>	

THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000

Vishay Siliconix

TO-220-1

DIM.	MILLIN	IETERS	INC	HES
	MIN.	MAX.	MIN.	MAX.
А	4.24	4.65	0.167	0.183
b	0.69	1.02	0.027	0.040
b(1)	1.14	1.78	0.045	0.070
С	0.36	0.61	0.014	0.024
D	14.33	15.85	0.564	0.624
E	9.96	10.52	0.392	0.414
е	2.41	2.67	0.095	0.105
e(1)	4.88	5.28	0.192	0.208
F	1.14	1.40	0.045	0.055
H(1)	6.10	6.71	0.240	0.264
J(1)	2.41	2.92	0.095	0.115
L	13.36	14.40	0.526	0.567
L(1)	3.33	4.04	0.131	0.159
ØP	3.53	3.94	0.139	0.155
Q	2.54	3.00	0.100	0.118

Note

• M* = 0.052 inches to 0.064 inches (dimension including protrusion), heatsink hole for HVM

Revison: 04-Nov-2021

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Hyperlinks included in this datasheet may direct users to third-party websites. These links are provided as a convenience and for informational purposes only. Inclusion of these hyperlinks does not constitute an endorsement or an approval by Vishay of any of the products, services or opinions of the corporation, organization or individual associated with the third-party website. Vishay disclaims any and all liability and bears no responsibility for the accuracy, legality or content of the third-party website or for that of subsequent links.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.