For technical questions within your region: DiodesAmericas@vishay.com, DiodesAsia@vishay.com, DiodesEurope@vishay.com THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000

1

Vishay General Semiconductor

Photovoltaic Solar Cell Protection Schottky Plastic Rectifier

High Barrier Technology for Improved High Temperature Performance This datasheet reflects specifications of product in actual application.

- · Guardring for overvoltage protection
- · Low forward voltage drop, low power losses · High efficiency operation
- · High forward surge capability
- Solder dip 275 °C max. 10 s, per JESD 22-B106
- Material categorization: For definitions of compliance please see www.vishay.com/doc?99912

TYPICAL APPLICATIONS

For use in solar cell junction box as a bypass diode for protection, using DC forward current without reverse bias.

MECHANICAL DATA

Case: P600, molded epoxy over passivated junction Molding compound meets UL 94 V-0 flammability rating Base P/N-E3 - RoHS compliant, commercial grade

Terminals: Matte tin plated leads, solderable per J-STD-002 and JESD 22-B102

E3 suffix meets JESD 201 class 1A whisker test

Polarity: Color band denotes cathode end

MAXIMUM RATINGS ($T_A = 25 \text{ °C}$ unless otherwise noted)				
PARAMETER	SYMBOL	SB15H45	UNIT	
Maximum repetitive peak reverse voltage	V _{RRM}	45	V	
Maximum average forward rectified current (fig. 1)	I _{F(AV)} ⁽¹⁾	15	— A	
	I _{F(AV)} ⁽²⁾	7		
Peak forward surge current 8.3 ms single half sine-wave superimposed on rated load	I _{FSM}	300	А	
Operating junction and storage temperature range	T _{OP} , T _{STG}	- 55 to + 175	°C	
Junction temperature in DC forward current without reverse bias, $t \leq 1 \ h$ (fig. 1)	T _J ⁽³⁾	≤ 200	°C	

Notes

⁽¹⁾ With heatsink, T_L = 25 °C

Revision: 02-Aug-13

⁽²⁾ Without heatsink, free air

(3) Meets the requirements of IEC 61215 ed. 2 bypass diode thermal test

www.vishay.com

PRIMARY CHARACTERISTICS				
I _{F(AV)}	15 A			
V _{RRM}	45 V			
I _{FSM}	300 A			
V_F at I_F = 15 A	0.46 V			
T _{OP} max.	175 °C			
T _J max. (DC forward current)	200 °C			
Package	P600			
Diode variation	Single die			

SB15H45

RoHS

COMPLIANT

www.vishay.com

Vishay General Semiconductor

SB15H45

ELECTRICAL CHARACTERISTICS (T _A = 25 °C unless otherwise noted)							
PARAMETER	TEST C	TEST CONDITIONS		TYP.	MAX.	UNIT	
Instantaneous forward voltage	I _F = 5 A		V _F (1)	0.48	-	V	
	I _F = 7.5 A	T _A = 25 °C		0.50	-		
	I _F = 15 A			0.56	0.64		
	$I_F = 5 A$	T _A = 125 °C		0.35	-		
	I _F = 7.5 A			0.39	-		
	I _F = 15 A			0.46	0.54		
Reverse current	V _B = 45 V	T _A = 25 °C	I _R (2)	10	300	μA	
	v _R = 43 v	T _A = 125 °C		8	20	mA	
Typical junction capacitance	4.0 V, 1 MHz	4.0 V, 1 MHz		1020	-	pF	

Notes

 $^{(1)}\,$ Pulse test: 300 μs pulse width, 1 % duty cycle

⁽²⁾ Pulse test: 10 ms pulse width

THERMAL CHARACTERISTICS ($T_A = 25 \text{ °C}$ unless otherwise noted)				
PARAMETER	SYMBOL	SB15H45	UNIT	
Thermal resistance	R _{0JA} ⁽¹⁾	66	°C/W	
	R _{0JL} ⁽¹⁾	14		
Typical thermal resistance	R _{0JL} ⁽²⁾	3.5	°C/W	

Notes

⁽¹⁾ Without heatsink, free air

⁽²⁾ $T_A = 75$ °C, $T_L = 125$ °C, $T_J = 175$ °C, infinite mass at 0.375" (9.5 mm) lead length

ORDERING INFORMATION (Example)					
PREFERRED P/N	UNIT WEIGHT (g)	PREFERRED PACKAGE CODE	BASE QUANTITY	DELIVERY MODE	
SB15H45-E3/54	1.756	54	800	13" diameter paper tape and reel	

RATINGS AND CHARACTERISTICS CURVES

(T_A = 25 °C unless otherwise noted)

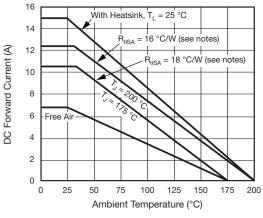
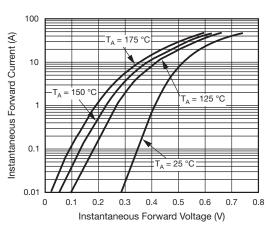


Fig. 1 - Forward Current Derating Curve

Notes

- Mounted on junction box
- Using DC forward current
- Junction box SA (sink to ambient)
- Assumes $R_{\theta LS}$ (lead to sink) of 5 °C/W
- Thermal resistance $R_{\theta SA}$ (sink to ambient):


$$\mathsf{R}_{\theta \mathsf{S} \mathsf{A}} = \frac{(\mathsf{T}_{\mathsf{J}} - \mathsf{T}_{\mathsf{A}})}{\mathsf{P}_{\mathsf{D}}} - (\mathsf{R}_{\theta \mathsf{J} \mathsf{L}} + \mathsf{R}_{\theta \mathsf{L} \mathsf{S}})$$

• P_D : Power dissipation $P_D = V_F \times I_F$

2

For technical questions within your region: <u>DiodesAmericas@vishay.com</u>, <u>DiodesAsia@vishay.com</u>, <u>DiodesEurope@vishay.com</u> THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT <u>www.vishay.com/doc?91000</u>

www.vishay.com

Fig. 2 - Typical Instantaneous Forward Characteristics

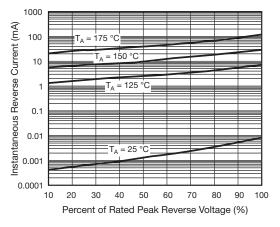
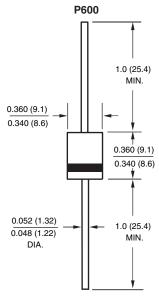



Fig. 3 - Typical Reverse Characteristics

PACKAGE OUTLINE DIMENSIONS in inches (millimeters)

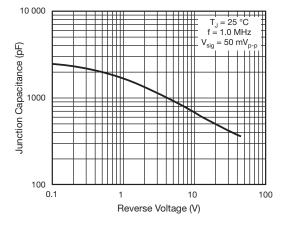


Fig. 4 - Typical Junction Capacitance

Revision: 02-Aug-13

3

Document Number: 89061

For technical questions within your region: <u>DiodesAmericas@vishay.com</u>, <u>DiodesAsia@vishay.com</u>, <u>DiodesEurope@vishay.com</u> THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT <u>www.vishay.com/doc?91000</u>

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.