
VS-STPS40L15CT-M3

Vishay Semiconductors

High Performance Schottky Rectifier, 2 x 20 A

www.vishay.com

SHAY

PRIMARY CHARACTERISTICS						
I _{F(AV)} 2 x 20 A						
V _R	15 V					
V _F at I _F	See Electrical table					
I _{RM} max.	600 mA at 100 °C					
T _J max.	125 °C					
E _{AS}	10 mJ					
Package	3L TO-220AB					
Circuit configuration	Common cathode					

FEATURES

- 125 °C T_J operation (V_R < 5 V)
- Optimized for OR-ing applications
- Ultra low forward voltage drop
- High frequency operation

FREE

- term reliabilityHigh purity, high temperature epoxy encapsulation for enhanced mechanical strength and moisture resistance
- Designed and qualified according to JEDEC®-JESD47

· Guard ring for enhanced ruggedness and long

• Material categorization: for definitions of compliance please see <u>www.vishay.com/doc?99912</u>

DESCRIPTION

The center tap Schottky rectifier module has been optimized for ultra low forward voltage drop specifically for the OR-ing of parallel power supplies. The proprietary barrier technology allows for reliable operation up to 125 °C junction temperature. Typical applications are in parallel switching power supplies, converters, reverse battery protection, and redundant power subsystems.

MAJOR RATINGS AND CHARACTERISTICS								
SYMBOL CHARACTERISTICS VALUES UN								
I _{F(AV)}	Rectangular waveform	40	А					
V _{RRM}		15	V					
I _{FSM}	t _p = 5 μs sine	700	А					
V _F	19 A _{pk} , T _J = 125 °C (per leg, typical)	0.25	V					
TJ		-55 to +125	°C					

VOLTAGE RATINGS							
PARAMETER SYMBOL VS-STPS40L15CT-M3 UNITS							
Maximum DC reverse voltage	V _R	15	M				
Maximum working peak reverse voltage	V _{RWM}	15	v				

ABSOLUTE MAXIMUM RATINGS									
PARAMETER	SYMBOL	TEST COND	VALUES	UNITS					
Maximum average forward per leg	$I_{F(AV)}$ 50 % duty cycle at T _C = 85 °C, rectangular waveform		20						
current, see fig. 5 per device			40						
Maximum peak one cycle non-repetitive	I	5 μs sine or 3 μs rect. pulse	Following any rated load condition and with rated	700	А				
surge current per leg, see fig. 7	I _{FSM}	10 ms sine or 6 ms rect. pulse	V _{RRM} applied	330					
Repetitive avalanche current per leg	I _{AR}	Current decaying linearly to zero in 1 μ s Frequency limited by T _J maximum V _A = 1.5 x V _R typical		2					
Non-repetitive avalanche energy per leg	E _{AS}	T _J = 25 °C, I _{AS} = 2 A, L = 6 mH	l	10	mJ				

Revision: 22-Dec-2021

www.vishay.com

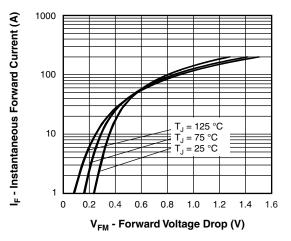
VS-STPS40L15CT-M3

Vishay Semiconductors

ELECTRICAL SPECIFICATIONS								
PARAMETER	SYMBOL	TEST CO	NDITIONS	TYP.	MAX.	UNITS		
		19 A	T.I = 25 °C	-	0.41			
Forward voltage drop per leg	V _{FM} ⁽¹⁾	40 A	1j=25 0	-	0.52	v		
See fig. 1	VFM (*)	19 A	T.I = 125 °C	0.25	0.33			
		40 A	1J=125 C	0.37	0.50			
Reverse leakage current per leg	I _{RM} ⁽¹⁾	T _J = 25 °C	$V_{\rm B}$ = Rated $V_{\rm B}$	-	10	mA		
See fig. 2	IRM (")	T _J = 100 °C	$v_{\rm R} = naleu v_{\rm R}$	-	600			
Threshold voltage	V _{F(TO)}	V _{F(TO)} 0.182		182	V			
Forward slope resistance	r _t	$T_J = T_J maximum$		7.6		mΩ		
Maximum junction capacitance per leg	CT	V_R = 5 V_{DC} (test signal range 100 kHz to 1 MHz) 25 °C			2000	pF		
Typical series inductance per leg	L _S	Measured lead to lead 5 mm from package body			-	nH		
Maximum voltage rate of change	dV/dt	Rated V _R		10	000	V/µs		

Note

 $^{(1)}\,$ Pulse width < 300 $\mu s,$ duty cycle < 2 %


THERMAL - MECHANICAL SPECIFICATIONS							
PARAMETER	SYMBOL	TEST CONDITIONS	VALUES	UNITS			
Maximum junction temperature range	TJ		-55 to +125	°C			
Maximum storage temperature range	T _{Stg}		-55 to +150				
Maximum thermal resistance, junction to case per leg	R _{thJC}	DC operation See fig. 4	1.5				
Typical thermal resistance, case to heatsink	R _{thCS}	Mounting surface, smooth, and greased (only for TO-220)	0.50	°C/W			
Maximum thermal resistance, junction to ambient	R _{thJA}	DC operation (for D ² PAK and TO-262)	40				
Annewimete weight			2	g			
Approximate weight			0.07	oz.			
Mounting torque		Non lubricated threads	6 (5)	kgf ⋅ cm			
Mounting torque maximum		Non-lubricated threads	12 (10)	(lbf ⋅ in)			
Marking device		Case style 3L TO-220AB	STPS40	DL15CT			

Revision: 22-Dec-2021

2

Vishay Semiconductors

www.vishay.com

SHAY

Fig. 1 - Maximum Forward Voltage Drop Characteristics

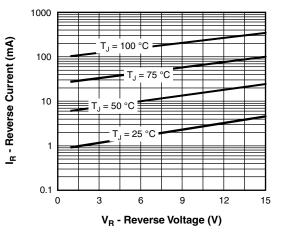


Fig. 2 - Typical Values of Reverse Current vs. Reverse Voltage

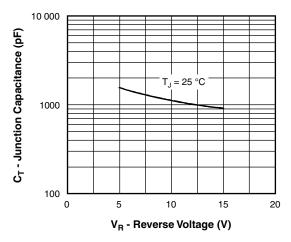
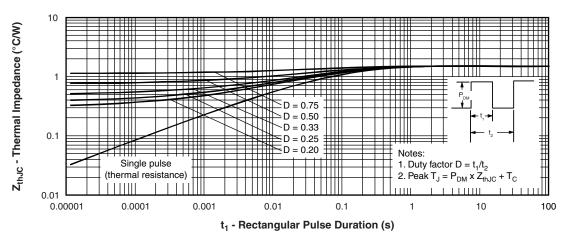
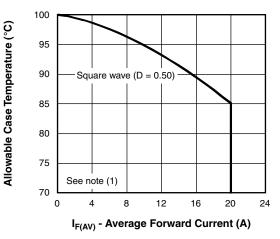
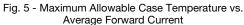



Fig. 3 - Typical Junction Capacitance vs. Reverse Voltage



Revision: 22-Dec-2021

3



Vishay Semiconductors

www.vishay.com

SHAY

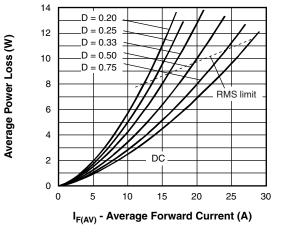


Fig. 6 - Forward Power Loss Characteristics

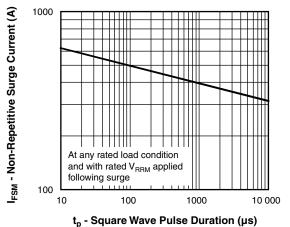


Fig. 7 - Maximum Non-Repetitive Surge Current

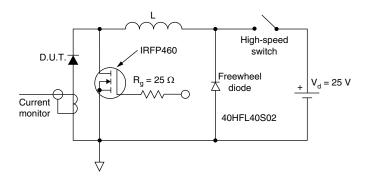


Fig. 8 - Unclamped Inductive Test Circuit

Note

⁽²⁾ Formula used: $T_C = T_J - (Pd + Pd_{REV}) \times R_{thJC}$; $\begin{array}{l} \mathsf{Pd} = \mathsf{forward} \ \mathsf{power} \ \mathsf{loss} = \mathsf{I}_{\mathsf{F}(\mathsf{AV})} \times \mathsf{V_{FM}} \ \mathsf{at} \ (\mathsf{I}_{\mathsf{F}(\mathsf{AV})}/\mathsf{D}) \ (\mathsf{see} \ \mathsf{fig.} \ \mathsf{6}); \\ \mathsf{Pd}_{\mathsf{REV}} = \mathsf{inverse} \ \mathsf{power} \ \mathsf{loss} = \mathsf{V}_{\mathsf{R1}} \times \mathsf{I}_{\mathsf{R}} \ (\mathsf{1} - \mathsf{D}); \ \mathsf{I}_{\mathsf{R}} \ \mathsf{at} \ \mathsf{V}_{\mathsf{R1}} = \mathsf{80} \ \% \ \mathsf{rated} \ \mathsf{V}_{\mathsf{R}} \\ \end{array}$

Revision: 22-Dec-2021

4

Document Number: 96259

VS-STPS40L15CT-M3

Vishay Semiconductors

www.vishay.com

ORDERING INFORMATION TABLE

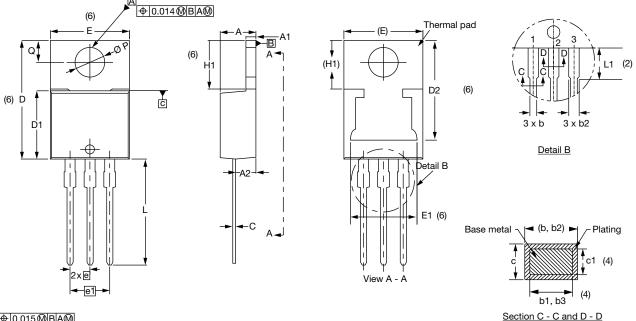
Device code

VISHAY

е	VS-		STPS	40	L	15	СТ	-M3
			(2)	(3)	4	(5)	6	
			\bigcirc	\bigcirc	vicendus	\bigcirc	duot	\bigcirc
	1	-		,	iconduc PS seri		auci	
	3	-	Curr	ent ratii	ng (40 =	40 A)		
	4	-	L =	Low vol	tage dro	р		
	5	-		•	ng (15 =	,		
	6	-			tial part	number		
	7	-			ntal digit gen-free	RoHS-	complia	int, and

ORDERING INFORMATION (Example)							
PREFERRED P/N BASE QUANTITY PACKAGING DESCRIPTION							
VS-STPS40L15CT-M3	S40L15CT-M3 50 Antistatic plastic tubes						

LINKS TO RELATED DOCUMENTS					
Dimensions <u>www.vishay.com/doc?96154</u>					
Part marking information	www.vishay.com/doc?95028				


Vishay Semiconductors

TO-220AB 3L

DIMENSIONS in millimeters and inches

www.vishay.com

ISHAY

⊕0.015@BA@

SYMBOL	MILLIMETERS		INC	HES	NOTES
STMBOL	MIN.	MAX.	MIN.	MAX.	NOTES
А	4.25	4.65	0.167	0.183	
A1	1.14	1.40	0.045	0.055	
A2	2.50	2.92	0.098	0.115	
b	b 0.69		0.027	0.040	
b1	0.38	0.97	0.015	0.038	4
b2	1.20	1.73	0.047	0.068	
b3	1.14	1.73	0.045	0.068	4
С	0.36	0.61	0.014	0.024	
c1	0.36	0.56	0.014	0.022	4
D	14.85	15.35	0.585	0.604	3
D1	8.38	9.02	0.330	0.355	

SYMBOL	MILLIMETERS		INC	INCHES			
STWIDOL	MIN.	MAX.	MIN.	MAX.	NOTES		
D2	11.68	13.30	0.460	0.524	6, 7		
E	10.11	10.51	0.398	0.414	3, 6		
E1	6.86	8.89	0.270	0.350	6		
е	2.41	2.67	0.095	0.105			
e1	4.88	5.28	0.192	0.208			
H1	6.09	6.48	0.240	0.255	6		
L	13.52	14.02	0.532	0.552			
L1	3.32	3.82	0.131	0.150	2		
ØΡ	3.54	3.91	0.139	0.154			
Q	2.60	3.00	0.102	0.118			

Conforms to JEDEC[®] outline TO-220AB

Notes

- ⁽¹⁾ Dimensioning and tolerancing as per ASME Y14.5M-1994
- (2) Lead dimension and finish uncontrolled in L1
- (3) Dimension D, D1, and E do not include mold flash. Mold flash shall not exceed 0.127 mm (0.005") per side. These dimensions are measured at the outermost extremes of the plastic body
- (4) Dimension b1, b3, and c1 apply to base metal only
- ⁽⁵⁾ Controlling dimensions: inches
- ⁽⁶⁾ Thermal pad contour optional within dimensions E, H1, D2, and E1
- ⁽⁷⁾ Outline conforms to JEDEC[®] TO-220, except D2

Revision: 14-Mar-2022

1

Document Number: 96154

www.vishay.com

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Hyperlinks included in this datasheet may direct users to third-party websites. These links are provided as a convenience and for informational purposes only. Inclusion of these hyperlinks does not constitute an endorsement or an approval by Vishay of any of the products, services or opinions of the corporation, organization or individual associated with the third-party website. Vishay disclaims any and all liability and bears no responsibility for the accuracy, legality or content of the third-party website or for that of subsequent links.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.