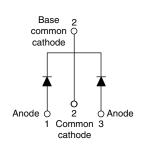


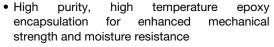
www.vishay.com


Vishay Semiconductors

HALOGEN

FREE

Schottky Rectifier, 2 x 20 A





PRODUCT SUMMARY				
Package	TO-220AB			
I _{F(AV)}	2 x 20 A			
V _R	20 V			
V _F at I _F	0.34 V			
I _{RM} max.	310 mA at 125 °C			
T _J max.	150 °C			
Diode variation	Common cathode			
E _{AS}	18 mJ			

FEATURES

- 150 °C T_J operation
- Optimized for 3.3 V application
- Ultralow forward voltage drop
- High frequency operation
- Guard ring for enhanced ruggedness and long term reliability

- Designed and qualified according to JEDEC-JESD47
- Halogen-free according to IEC 61249-2-21 definition (-N3 only)

This center tap Schottky rectifier has been optimized for ultralow forward voltage drop specifically for 3.3 V output power supplies. The proprietary barrier technology allows for reliable operation up to 150 °C junction temperature. Typical applications are in switching power supplies, converters, reverse battery protection, and redundant power subsystems.

MAJOR RATINGS AND CHARACTERISTICS					
SYMBOL	CHARACTERISTICS	VALUES	UNITS		
I _{F(AV)}	Rectangular waveform	40	Α		
V _{RRM}		20	V		
I _{FSM}	t _p = 5 μs sine	1000	Α		
V _F	20 A _{pk} , T _J = 125 °C	0.34	V		
T _J		- 55 to 150	°C		

VOLTAGE RATINGS					
PARAMETER	SYMBOL	VS-47CTQ020PbF	VS-47CTQ020-N3	UNITS	
Maximum DC reverse voltage	V _R	20	20	V	
Maximum working peak reverse voltage	V_{RWM}	20	20	V	

ABSOLUTE MAXIMUM RATINGS						
PARAMETER	SYMBOL	TEST COND	ITIONS	VALUES	UNITS	
Maximum average pe	r leg		50.0/ distributed at T = 105.00 master and a master and			
forward current per de	vice I _{F(AV)}	50 % duty cycle at T_C = 135 °C, rectangular waveform		40		
Maximum peak one cycle non-repetitive	lance.	5 μs sine or 3 μs rect. pulse	Following any rated load condition and with rated	1000	Α	
surge current per leg	I _{FSM}	10 ms sine or 6 ms rect. pulse	V _{RRM} applied	250		
Non-repetitive avalanche energy per leg	E _{AS}	$T_J = 25 ^{\circ}\text{C}, I_{AS} = 3 \text{A}, L = 3 \text{mH}$		18	mJ	
Repetitive avalanche current per leg	I _{AR}	Current decaying linearly to zero in 1 μ s Frequency limited by T_J maximum $V_A = 1.5 \times V_R$ typical		3	А	

Revision: 29-Aug-11 Document Number: 94227

VS-47CTQ020PbF, VS-47CTQ020-N3

Vishay Semiconductors

ELECTRICAL SPECIFICATIONS						
PARAMETER	SYMBOL	TEST CONDITIONS		VALUES	UNITS	
		20 A	T _{.1} = 25 °C	0.45	V	
		40 A	1J=25 C	0.51		
Maximum forward valtage dress per les	V _{FM} ⁽¹⁾	20 A	T 105 °C	0.34		
Maximum forward voltage drop per leg	V _{FM} (·)	40 A	- T _J = 125 °C	0.44		
		20 A	T _ 150 °C	0.31		
		40 A	- T _J = 150 °C	0.42		
	I _{RM} ⁽¹⁾	T _J = 125 °C	V _R = 5 V	60		
			V _R = 3.3 V	45		
Maximum reverse leakage current per leg		T _J = 150 °C	V _R = 10 V	306	mA	
		T _J = 25 °C	V Dated V	3		
		T _J = 125 °C	V_R = Rated V_R	310		
Threshold voltage	V _{F(TO)}	T _J = T _J maximum		0.188	V	
Forward slope resistance	r _t			5.9	mΩ	
Maximum junction capacitance per leg	C _T	$V_R = 5 V_{DC}$ (test signal range 100 kHz to 1 MHz) 25 °C		3000	pF	
Typical series inductance per leg	L _S	Measured lead to lead 5 m	5.5	nH		
Maximum voltage rate of change	dV/dt	Rated V _R		10 000	V/µs	

Note

 $^{^{(1)}\,}$ Pulse width < 300 $\mu s,$ duty cycle < 2 %

THERMAL - MECHANICAL SPECIFICATIONS						
PARAMETER		SYMBOL	TEST CONDITIONS	VALUES	UNITS	
Maximum junction and storage temperature range	Э	T _J , T _{Stg}		- 55 to 150	°C	
Maximum thermal resistance, junction to case per leg		В	DC eneration	1.5		
Maximum thermal resistance, junction to case per package		R _{thJC}	DC operation	0.75	°C/W	
Typical thermal resistance, case to heatsink		R _{thCS}	Mounting surface, smooth and greased	0.50		
Approximate weight				2	g	
Approximate weight				0.07	oz.	
Mounting torque	minimum			6 (5)	kgf · cm	
Mounting torque -	maximum			12 (10)	(lbf \cdot in)	
Marking device			Case style TO-220AB	47CT	Q020	

Vishay Semiconductors

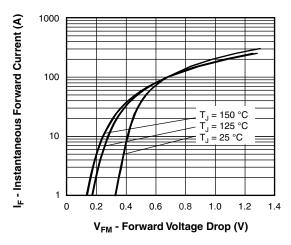


Fig. 1 - Maximum Forward Voltage Drop Characteristics (Per Leg)

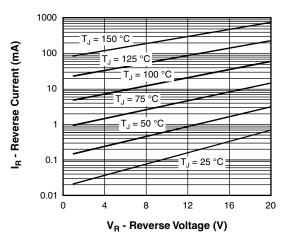


Fig. 2 - Typical Values of Reverse Current vs. Reverse Voltage (Per Leg)

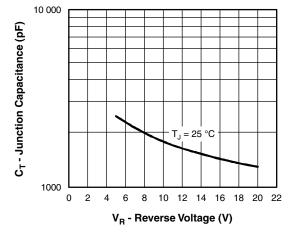


Fig. 3 - Typical Junction Capacitance vs. Reverse Voltage (Per Leg)

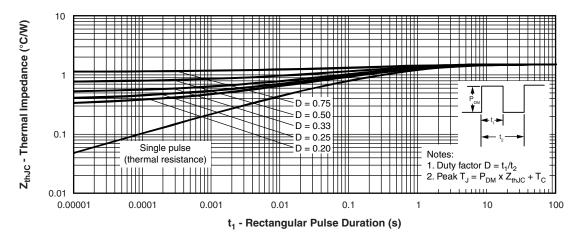


Fig. 4 - Maximum Thermal Impedance Z_{thJC} Characteristics (Per Leg)

www.vishay.com

Vishay Semiconductors

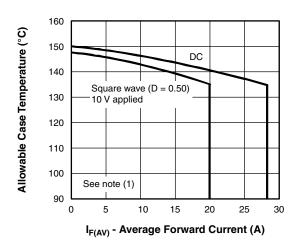


Fig. 5 - Maximum Allowable Case Temperature vs. Average Forward Current (Per Leg)

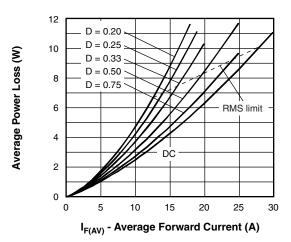


Fig. 6 - Forward Power Loss Characteristics (Per Leg)

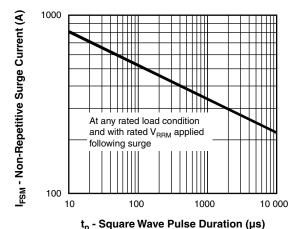


Fig. 7 - Maximum Non-Repetitive Surge Current (Per Leg)

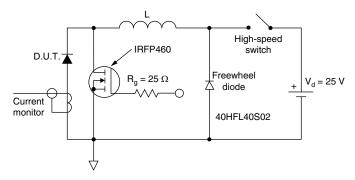
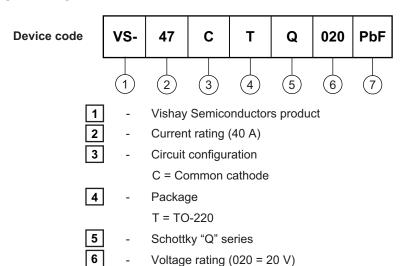


Fig. 8 - Unclamped Inductive Test Circuit


Note

 $^{(1)}$ Formula used: $T_C = T_J - (Pd + Pd_{REV}) \times R_{thJC};$ $Pd = Forward power loss = I_{F(AV)} \times V_{FM}$ at (I_{F(AV)}/D) (see fig. 6); $Pd_{REV} = Inverse power loss = V_{R1} \times I_R (1 - D); I_R at V_{R1} = 10 \text{ V}$

VS-47CTQ020PbF, VS-47CTQ020-N3

Vishay Semiconductors

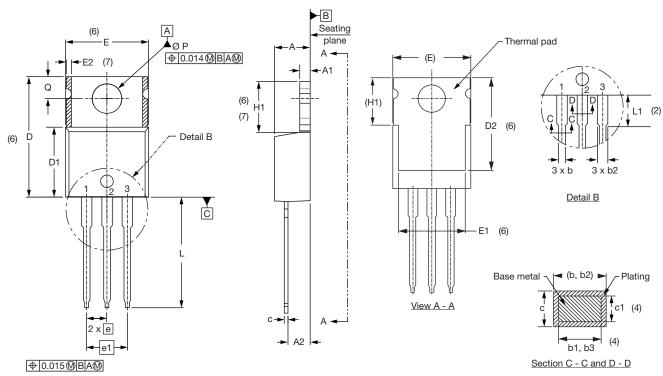
ORDERING INFORMATION TABLE

Environmental digit

ORDERING INFORMATION (Example)						
PREFERRED P/N	QUANTITY PER T/R	MINIMUM ORDER QUANTITY	PACKAGING DESCRIPTION			
VS-47CTQ020PbF	50	1000	Antistatic plastic tube			
VS-47CTQ020-N3	50	1000	Antistatic plastic tube			

• PbF = Lead (Pb)-free and RoHS compliant

• -N3 = Halogen-free, RoHS compliant, and totally lead (Pb)-free


LINKS TO RELATED DOCUMENTS				
Dimensions <u>www.vishay.com/doc?95222</u>				
Dort marking information	TO-220AB PbF	www.vishay.com/doc?95225		
Part marking information	TO-220AB -N3	www.vishay.com/doc?95028		

Vishay Semiconductors

TO-220AB

DIMENSIONS in millimeters and inches

Lead assignments

<u>Diodes</u>

- 1. Anode/open
- 2. Cathode
- 3. Anode

Conforms to JEDEC outline TO-220AB

SYMBOL	MILLIN	IETERS	INC	HES	NOTES
STMBOL	MIN.	MAX.	MIN.	MAX.	NOTES
Α	4.25	4.65	0.167	0.183	
A1	1.14	1.40	0.045	0.055	
A2	2.56	2.92	0.101	0.115	
b	0.69	1.01	0.027	0.040	
b1	0.38	0.97	0.015	0.038	4
b2	1.20	1.73	0.047	0.068	
b3	1.14	1.73	0.045	0.068	4
С	0.36	0.61	0.014	0.024	
c1	0.36	0.56	0.014	0.022	4
D	14.85	15.25	0.585	0.600	3
D1	8.38	9.02	0.330	0.355	
D2	11.68	12.88	0.460	0.507	6

SYMBOL	MILLIM	IETERS	INCHES		NOTES
STIMBOL	MIN.	MAX.	MIN.	MAX.	NOTES
Е	10.11	10.51	0.398	0.414	3, 6
E1	6.86	8.89	0.270	0.350	6
E2	-	0.76	-	0.030	7
е	2.41	2.67	0.095	0.105	
e1	4.88	5.28	0.192	0.208	
H1	6.09	6.48	0.240	0.255	6, 7
L	13.52	14.02	0.532	0.552	
L1	3.32	3.82	0.131	0.150	2
ØΡ	3.54	3.73	0.139	0.147	
Q	2.60	3.00	0.102	0.118	
θ	90° to 93°		90° t	o 93°	

Notes

- (1) Dimensioning and tolerancing as per ASME Y14.5M-1994
- (2) Lead dimension and finish uncontrolled in L1
- (3) Dimension D, D1 and E do not include mold flash. Mold flash shall not exceed 0.127 mm (0.005") per side. These dimensions are measured at the outermost extremes of the plastic body
- (4) Dimension b1, b3 and c1 apply to base metal only
- (5) Controlling dimensions: inches
- (6) Thermal pad contour optional within dimensions E, H1, D2 and E1
- (7) Dimensions E2 x H1 define a zone where stamping and singulation irregularities are allowed
- (8) Outline conforms to JEDEC TO-220, except A2 (maximum) and D2 (minimum) where dimensions are derived from the actual package outline

Lead tip

Legal Disclaimer Notice

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.