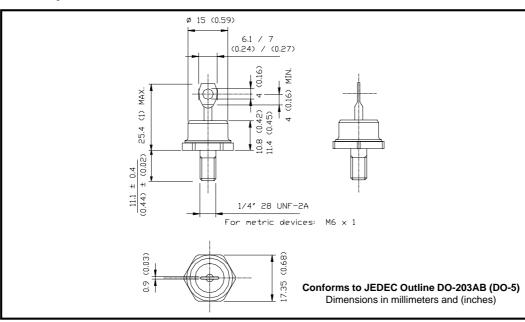
International Rectifier

1N6097 1N6098

SCHOTTKY RECTIFIER

50 Amp

Major Ratings and Characteristics


Characteristics	1N609.	Units
I _{F(AV)} Rectangular waveform	50*	А
V _{RRM}	30/40*	V
I _{FSM} @ 60Hz	800*	А
V _F @ 160 Apk, T _J = 70 °C	0.86*	V
T _J range	-65 to 125*	°C

^{*} JEDEC Registered Values

Description/ Features

The 1N609. Schottky rectifier has been optimized for very low forward voltage drop, with moderate leakage. The proprietary barrier technology allows for reliable operation up to 125° C junction temperature. Typical applications are in switching power supplies, converters, free-wheeling diodes, and reverse battery protection.

- 125° C T operation
- Very low forward voltage drop
- High frequency operation
- Guard ring for enhanced ruggedness and long term reliability
- Hermetic packaging

1N6097, 1N6098

Bulletin PD-2.329 rev. B 11/02

Voltage Ratings

Part number	1N6097	1N6098	
V _R Max. DC Reverse Voltage (V)	30*	40*	
V _{RWM} Max. Working Peak Reverse Voltage (V)		40*	

Absolute Maximum Ratings

	Parameters	1N609.	Units	Conditions	
I _{F(AV)}	Max. Average Forward Current See Fig. 5	50*	А	50% duty cycle @ T _C =70 °C, red	ctangular wave form
I _{FSM}	Max. Peak One Cycle Non-Repetitive	10,800		5μs Sine or 3μs Rect. pulse	Following any rated load condition and
	Surge Current See Fig. 7	800*	Α	60Hz halfwave, single phase	with rated V _{RRM} applied
E _{AS}	Non-Repetitive Avalanche Energy	81	mJ	T _J =25 °C, I _{AS} =12 Amps, L=1.12 mH	
I _{AR}	Repetitive Avalanche Current	12	Α	Current decaying linearly to zero in 1 µsec	
				Frequency limited by T_J max. $V_A = 1.5 \times V_R$ typical	

Electrical Specifications

	Parameters	1N609.	Units	Conditions	
V_{FM}	Max. Forward Voltage Drop (1)	0.60*	V	@ 10A	T _J = 25 °C
	See Fig. 1	0.86*	V	@ 160A	T _J = 70 °C
I _{RM}	Max. Reverse Leakage Current (1)	75	mA	T _J = 25 °C	V _P = rated V _P
	See Fig. 2	250*	mA	T _J = 125 °C	V _R = rated V _R
C _T	Max. Junction Capacitance	7000*	pF	$V_R = 1V_{DC}$, (test signal range 100Khz to 1Mhz) 25 °C	
L _s	Typical Series Inductance	7.5	nΗ	Measured from top of terminal to mounting plane	
dv/dt	Max. Voltage Rate of Change	10000	V/ µs		
	(Rated V _R)				

⁽¹⁾ Pulse Width < 300µs, Duty Cycle < 2%

Thermal-Mechanical Specifications

	Parameters		1N609.	Units	Conditions
T _J	Max. Junction Temperature	Range	-65 to 125*	°C	
T _{stg}	Max. Storage Temperature Range		-65 to 125*	°C	
R _{thJC}	Max. Thermal Resistance Juto Case	ınction	1.0*	°C/W	DC operation See Fig. 4
R _{thCS}	S Typical Thermal Resistance, Case to Heatsink		0.25	°C/W	Mounting surface, smooth and greased
wt	Approximate Weight		15 (0.53)	g(oz.)	
Т	MountingTorque	Min.	23 (20)	Kg-cm	Non-lubricatedthreads
		Max.	46 (40)	(Ibf-in)	
	CaseStyle	DO-203AI		(DO-5)	JEDEC

^{*} JEDEC Registered Values

Bulletin PD-2.329 rev. B 11/02

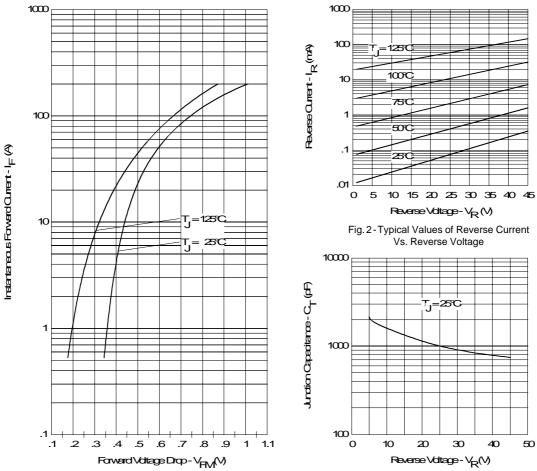


Fig. 1 - Maximum Forward Voltage Drop Characteristics

Fig. 3-Typical Junction Capacitance Vs. Reverse Voltage

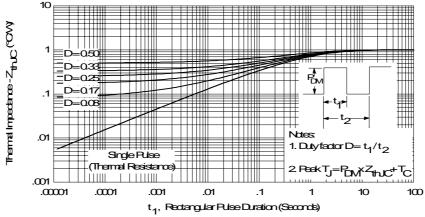


Fig. 4-Maximum Thermal Impedance Z_{thJC} Characteristics

Bulletin PD-2.329 rev. B 11/02

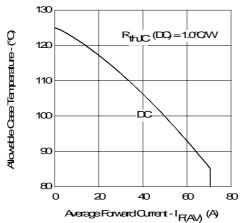


Fig. 5 - Maximum Allowable Case Temperature Vs. Average Forward Current

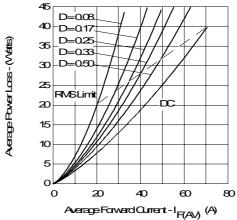


Fig. 6 - Forward Power Loss Characteristics

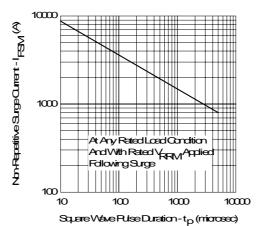


Fig. 7-Maximum Non-Repetitive Surge Current

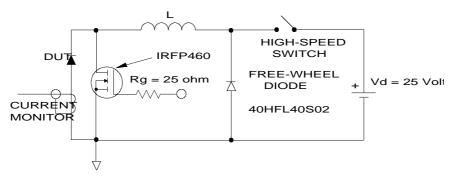


Fig. 8 - Unclamped Inductive Test Circuit

Bulletin PD-2.329 rev. B 11/02

Data and specifications subject to change without notice. This product has been designed for Industrial Level. Qualification Standards can be found on IR's Web site.

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7309
Visit us at www.irf.com for sales contact information. 11/02