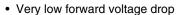

Vishay High Power Products


Schottky Rectifier, 3.0 A

PRODUCT SUMMARY			
I _{F(AV)}	3.0 A		
V_{R}	60 V		
I _{RM}	30 mA at 125 °C		

FEATURES

- High frequency operation
- Guard ring for enhanced ruggedness and long term reliability
- Lead (Pb)-free ("PbF" suffix)
- Designed and qualified for industrial level

DESCRIPTION

The MBRS360TRPbF surface mount Schottky rectifier has been designed for applications requiring low forward drop and small foot prints on PC boards. Typical applications are in disk drives, switching power supplies, converters, freewheeling diodes, battery charging, and reverse battery protection.

MAJOR RATINGS AND CHARACTERISTICS				
SYMBOL	CHARACTERISTICS	CHARACTERISTICS VALUES		
I _{F(AV)}	Rectangular waveform	3.0	Α	
V _{RRM}		60	V	
I _{FSM}	t _p = 5 μs sine	790	Α	
V _F	3.0 Apk, T _J = 125 °C	0.61	V	
T _J	Range	- 55 to 150	°C	

VOLTAGE RATINGS			
PARAMETER	SYMBOL	MBRS360TRPbF	UNITS
Maximum DC reverse voltage	V_{R}	60	V
Maximum working peak reverse voltage	V_{RWM}	30	V

ABSOLUTE MAXIMUM RATINGS					
PARAMETER	SYMBOL	TEST CONDITIONS		VALUES	UNITS
Marian was a second of a secon		50 % duty cycle at T _L = 118 °C, rectangular waveform		3.0	
Maximum average forward current	I _{F(AV)}	50 % duty cycle at T _L = 105 °C, rectangular waveform		4.0	
Maximum peak one cycle	1	5 μs sine or 3 μs rect. pulse	Following any rated load condition and with rated V _{RRM} applied	790	А
non-repetitive surge current	IFSM	10 ms sine or 6 ms rect. pulse		80	
Non-repetitive avalanche energy	E _{AS}	$T_J = 25 ^{\circ}\text{C}, I_{AS} = 1.0 \text{A}, L = 10 \text{mH}$		5.0	mJ
Repetitive avalanche current	I _{AR}	Current decaying linearly to zero in 1 μ s Frequency limited by T _J maximum V _A = 1.5 x V _R typical		Α	

MBRS360TRPbF

Vishay High Power Products Schottky Rectifier, 3.0 A

ELECTRICAL SPECIFICATIONS						
PARAMETER	SYMBOL	TEST CONDITIONS		TYP.	MAX.	UNITS
Maximum famoud orbits and describe	V _{FM} ⁽¹⁾	3 A	T _J = 25 °C	0.57	0.74	
		6 A		0.72	0.9	V
Maximum forward voltage drop	V FM \ /	3 A	T _J = 125 °C	0.51	0.61	
		6 A		0.62	0.77	
		T _J = 25 °C	V _R = Rated V _R	ı	0.5	
Maximum reverse leakage current	I _{RM} ⁽¹⁾	T _J = 100 °C		ı	20	mA
		T _J = 125 °C		ı	30	
Maximum junction capacitance	C _T	$V_R = 5 V_{DC}$ (test signal range 100 kHz to 1 MHz) 25 °C		1	180	pF
Typical series inductance	L _S	Measured lead to lead 5 mm from package body		ı	3.0	nH
Maximum voltage rate of change	dV/dt	Rated V _R		-	10 000	V/µs

Note

 $^{^{(1)}\,}$ Pulse width < 300 $\mu s,$ duty cycle < 2 %

THERMAL - MECHANICAL SPECIFICATIONS				
PARAMETER	SYMBOL	TEST CONDITIONS	VALUES	UNITS
Maximum junction and storage temperature range	$T_J^{(1)}, T_{Stg}$		- 55 to 150	°C
Maximum thermal resistance, junction to lead	R _{thJL} ⁽²⁾	DC eneration	12	°C/W
Maximum thermal resistance, junction to ambient	R _{thJA}	DC operation	46	*C/VV
Approximate weight			0.24	g
Approximate weight			0.008	OZ.
Marking device		Case style SMC (similar to DO-214AB)	V	36

Notes

www.vishay.com

For technical questions, contact: diodes-tech@vishay.com

¹⁾ $\frac{dP_{tot}}{dT_J} < \frac{1}{R_{thJA}}$ thermal runaway condition for a diode on its own heatsink

⁽²⁾ Mounted 1" square PCB

Schottky Rectifier, 3.0 A Vishay High Power Products

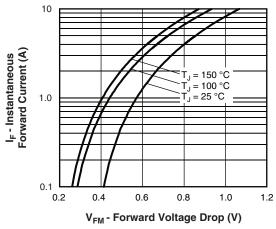


Fig. 1 - Maximum Forward Voltage Drop Characteristics (Per Leg)

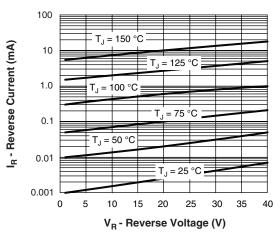


Fig. 2 - Typical Values of Reverse Current vs. Reverse Voltage (Per Leg)

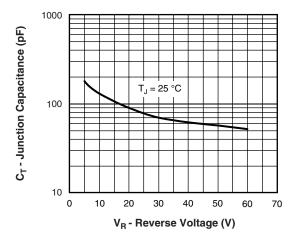


Fig. 3 - Typical Junction Capacitance vs. Reverse Voltage (Per Leg)

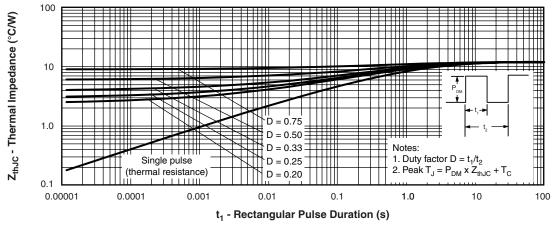


Fig. 4 - Maximum Thermal Impedance Z_{thJC} Characteristics (Per Leg)

Vishay High Power Products Schottky Rectifier, 3.0 A

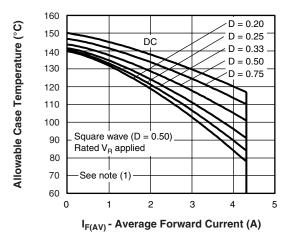


Fig. 5 - Maximum Average Forward Current vs. Allowable Lead Temperature

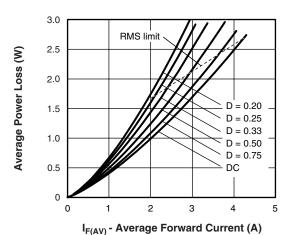


Fig. 6 - Maximum Average Forward Dissipation vs.
Average Forward Current

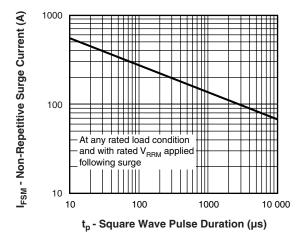
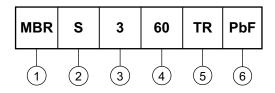


Fig. 7 - Maximum Peak Surge Forward Current vs. Pulse Duration

Note

 $\begin{array}{l} \text{(1) Formula used: } T_{C} = T_{J} \text{ - (Pd} + Pd_{REV}) \text{ x } R_{thJC}; \\ Pd = Forward power loss = I_{F(AV)} \text{ x } V_{FM} \text{ at } (I_{F(AV)}/D) \text{ (see fig. 6)}; \\ Pd_{REV} = Inverse power loss = V_{R1} \text{ x } I_{R} \text{ (1 - D); } I_{R} \text{ at } V_{R1} = 80 \text{ \% rated } V_{R} \\ \end{array}$

www.vishay.com


For technical questions, contact: diodes-tech@vishay.com

Schottky Rectifier, 3.0 A Vishay High Power Products

ORDERING INFORMATION TABLE

Device code

1 - Schottky MBR series

2 - S = SMC

Current rating (3 = 3 A)

Voltage rating (60 = 60 V)

TR = Tape and reel (3000 pieces)

6 - • None = Standard production

• PbF = Lead (Pb)-free

LINKS TO RELATED DOCUMENTS		
Dimensions http://www.vishay.com/doc?95023		
Part marking information http://www.vishay.com/doc?95029		
Packaging information	http://www.vishay.com/doc?95034	

Vishay

Disclaimer

All product specifications and data are subject to change without notice.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained herein or in any other disclosure relating to any product.

Vishay disclaims any and all liability arising out of the use or application of any product described herein or of any information provided herein to the maximum extent permitted by law. The product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein, which apply to these products.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications unless otherwise expressly indicated. Customers using or selling Vishay products not expressly indicated for use in such applications do so entirely at their own risk and agree to fully indemnify Vishay for any damages arising or resulting from such use or sale. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

Product names and markings noted herein may be trademarks of their respective owners.

Document Number: 91000
Revision: 18-Jul-08
www.vishay.com