

Fast Recovery Diodes (Hockey PUK Version), 845 A

PRIMARY CHARACTERISTICS				
I _{F(AV)}	845 A			
Package	B-43			
Circuit configuration	Single			

FEATURES

- High power fast recovery diode series
- 1.0 µs to 1.5 µs recovery time
- High voltage ratings up to 1600 V
- · High current capability
- Optimized turn-on and turn-off characteristics
- Low forward recovery
- · Fast and soft reverse recovery
- Press PUK encapsulation
- Hockey PUK version case style B-43
- Maximum junction temperature 125 °C
- Designed and qualified for industrial level
- Material categorization: for definitions of compliance please see <u>www.vishay.com/doc?99912</u>

TYPICAL APPLICATIONS

- Snubber diode for GTO
- High voltage freewheeling diode
- Fast recovery rectifier applications

MAJOR RATINGS AND CHARACTERISTICS						
DADAMETED	TEST CONDITIONS	VS-SD				
PARAMETER	TEST CONDITIONS	S10	S15	UNITS		
1		845	845	Α		
I _{F(AV)}	T _{hs}	55	55	°C		
1		1326	1326	А		
I _F (RMS)	T _{hs}	25	25	°C		
1	50 Hz	11 295	11 295	A		
I _{FSM}	60 Hz	11 830	11 830] ^		
l ² t	50 Hz	640	640	A		
	60 Hz	583	583	7		
V _{RRM}	Range	400 to 1000	1200 to 1600	V		
		1.0	1.5	μs		
t _{rr}	TJ	25	25	°C		
T _J		-40 to +125	-40 to +125]		

ELECTRICAL SPECIFICATIONS

VOLTAGE RATINGS								
TYPE NUMBER	VOLTAGE CODE	V _{RRM} , MAXIMUM REPETITIVE PEAK REVERSE VOLTAGE V	V _{RSM} , MAXIMUM NON-REPETITIVE PEAK REVERSE VOLTAGE V	I _{RRM} MAXIMUM AT T _J = 125 °C mA				
	04	400	500					
VS-SD803CS10C	08	800	900					
10		1000	1100	45				
12		1200	1300	40				
VS-SD803CS15C	14	1400	1500					
	16	1600	1700					

Revision: 11-Jan-18 1 Document Number: 93180

FORWARD CONDUCTION						
PARAMETER	SYMBOL	TEST CONDITIONS			VALUES	UNITS
Maximum average forward current	ı	180° conduc	ction, half sine wa	ave	845 (420)	Α
at heatsink temperature	I _{F(AV)}	Double side	(single side) cool	ed	55 (75)	°C
Maximum RMS forward current	I _{F(RMS)}	25 °C heatsi	nk temperature d	louble side cooled	1326	
		t = 10 ms	No voltage		11 295	
Maximum peak, one-cycle forward,	I	t = 8.3 ms	reapplied		11 830	А
non-repetitive current	I _{FSM}	t = 10 ms	100 % V _{RRM}		9500	
		t = 8.3 ms	reapplied	Sinusoidal half wave, initial $T_J = T_J$ maximum	9945	
	l²t	t = 10 ms	No voltage reapplied		640	kA ² s
Maximum I ² t for fusing		t = 8.3 ms			583	
I waxiinum i-t for fusing	1-1	t = 10 ms			451	
		t = 8.3 ms	reapplied		412	
Maximum I ² √t for fusing	I²√t	t = 0.1 to 10 ms, no voltage reapplied			6400	kA²√s
Low level of threshold voltage	V _{F(TO)1}	$(16.7 \% \text{ x } \pi \text{ x } _{F(AV)} < I < \pi \text{ x } _{F(AV)}), T_J = T_J \text{ maximum}$			1.02	V
High level of threshold voltage	V _{F(TO)2}	$(I > \pi \times I_{F(AV)}), T_J = T_J \text{ maximum}$			1.32	V
Low level of forward slope resistance	r _{f1}	(16.7 % x π x $I_{F(AV)}$ < I < π x $I_{F(AV)}$), $T_J = T_J$ maximum			0.38	mW
High level of forward slope resistance	r _{f2}	$(I > \pi \times I_{F(AV)}), T_J = T_J \text{ maximum} $ 0.28				IIIVV
Maximum forward voltage drop	V_{FM}	I _{pk} = 2655 A	, T _J = T _J maximui	m t _p = 10 ms sinusoidal wave	1.89	V

RECO	RECOVERY CHARACTERISTICS								
	MAXIMUM VALUE AT $T_J = 25$ °C	TEST CONDITIONS		TYPICAL VALUES AT T _J = 125 °C			· •		
CODE	t _{rr} AT 25 % I _{RRM} (μs)	I _{pk} SQUARE PULSE (A)	dl/dt (A/µs)	V _r (V)	t _{rr} AT 25 % I _{RRM} (µs)	Q _{rr} (μC)	I _{rr} (A)	dir/dt t	
S10	1.0	1000	000 50	-30	2.0	45	34	at I _{RM(REC)}	
S15	1.5			-30	3.2	87	51	, ,	

THERMAL AND MECHANICAL SPECIFICATIONS					
PARAMETER	SYMBOL	TEST CONDITIONS	VALUES	UNITS	
Maximum operating temperature range	T_J		-40 to 125	°C	
Maximum storage temperature range	T _{Stg}		-40 to 125	C	
Maximum thermal resistance,	ם	DC operation single side cooled	0.076		
case junction to heatsink	R_{thJ-hs}	DC operation double side cooled	0.038	K/W	
Mounting force, ± 10 %			9800 (1000)	N (kg)	
Approximate weight			83	g	
Case style		See dimensions - link at the end of datasheet	B-4	3	

ΔR_{thJ-hs} CONDUCTION								
CONDUCTION ANGLE	SINUSOIDAL C	ONDUCTION	RECTANGULA	R CONDUCTION	TEST CONDITIONS	UNITS		
CONDUCTION ANGLE	SINGLE SIDE	DOUBLE SIDE	SINGLE SIDE	DOUBLE SIDE	TEST CONDITIONS	UNITS		
180°	0.006	0.007	0.005	0.005	$T_J = T_J$ maximum	K/W		
120°	0.008	0.008	0.008	0.008				
90°	0.010	0.010	0.011	0.011				
60°	0.015	0.015	0.016	0.016				
30°	0.026	0.026	0.026	0.026				

Note

• The table above shows the increment of thermal resistance RthJ-hs when devices operate at different conduction angles than DC

www.vishay.com

130 Maximum Allowable Heatsink Temperature (°C) SD803C...C Series (Single Side Cooled) $R_{thJ-hs}(DC) = 0.076 \text{ K/W}$ 120 110 nduction Angle 100 90 309 80 180 120 100 150 200 250 300 350 400 450 Average Forward Current (A)

Fig. 1 - Current Ratings Characteristics

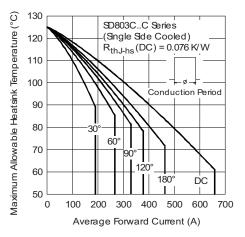


Fig. 2 - Current Ratings Characteristics

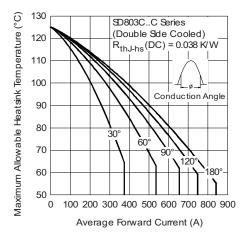


Fig. 3 - Current Ratings Characteristics

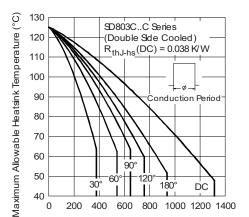


Fig. 4 - Current Ratings Characteristics

Average Forward Current (A)

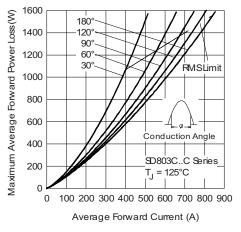


Fig. 5 - Forward Power Loss Characteristics

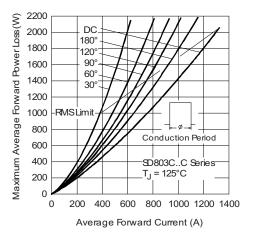


Fig. 6 - Forward Power Loss Characteristics

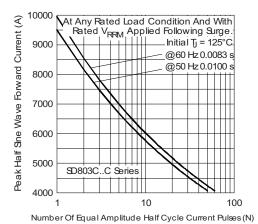


Fig. 7 - Maximum Non-Repetitive Surge Current Single and Double-Side Cooled

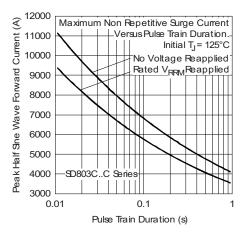


Fig. 8 - Maximum Non-Repetitive Surge Current Single and Double-Side Cooled

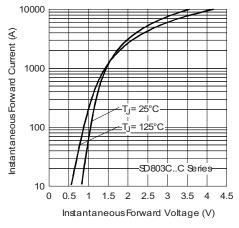


Fig. 9 - Forward Voltage Drop Characteristics

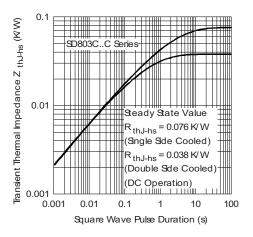
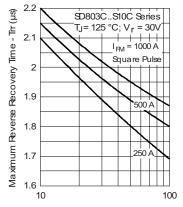



Fig. 10 - Thermal Impedance Z_{thJ-hs} Characteristics

Pate Of Fall Of Forward Current - di/dt (A/µs)

Fig. 11 - Recovery Time Characteristics

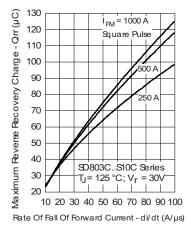


Fig. 12 - Recovery Charge Characteristics

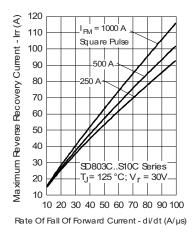


Fig. 13 - Recovery Current Characteristics

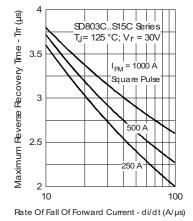


Fig. 14 - Recovery Time Characteristics

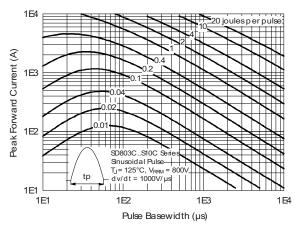


Fig. 17 - Maximum Total Energy Loss Per Pulse Characteristics

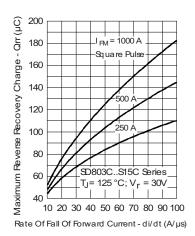


Fig. 15 - Recovery Charge Characteristics

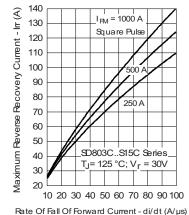
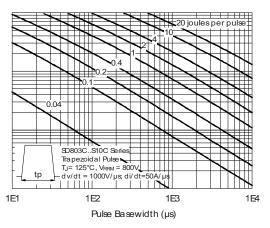
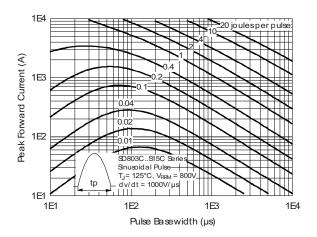




Fig. 16 - Recovery Current Characteristics

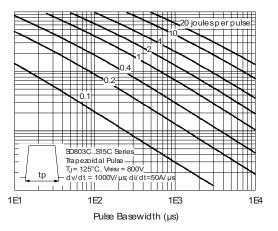
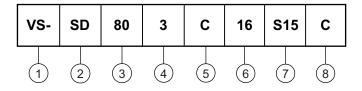



Fig. 18 - Maximum Total Energy Loss Per Pulse Characteristics

ORDERING INFORMATION TABLE

Device code

Vishay Semiconductors product

2 - Diode

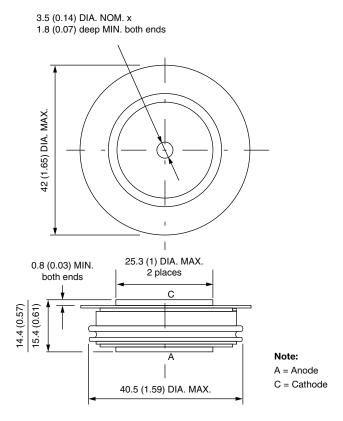
Essential part number

4 - 3 = fast recovery

5 - C = ceramic PUK

6 - Voltage code x 100 = V_{RRM} (see Voltage Ratings table)

7 - t_{rr} code (see Recovery Characteristics table)


8 - C = PUK case B-43

LINKS TO RELATED DOCUMENTS			
Dimensions	www.vishay.com/doc?95249		

B-43

DIMENSIONS in millimeters (inches)

Quote between upper and lower pole pieces has to be considered after application of mounting force (see Thermal and Mechanical Specifications)

Legal Disclaimer Notice

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Hyperlinks included in this datasheet may direct users to third-party websites. These links are provided as a convenience and for informational purposes only. Inclusion of these hyperlinks does not constitute an endorsement or an approval by Vishay of any of the products, services or opinions of the corporation, organization or individual associated with the third-party website. Vishay disclaims any and all liability and bears no responsibility for the accuracy, legality or content of the third-party website or for that of subsequent links.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.