
Vishay High Power Products

Ultralow V_F Hyperfast Rectifier for Discontinuous Mode PFC, 15 A FRED Pt^{TM}

PRODUCT SUMMARY					
V _F (typical)	0.99 V				
I _{F(AV)}	15 A				
V _R	600 V				

FEATURES

- Benchmark ultralow forward voltage drop
- Hyperfast recovery time
- Low leakage current
- 175 °C operating junction temperature
- Fully isolated package ($V_{INS} = 2500 V_{RMS}$)
- UL E78996 approved
- Compliant to RoHS directive 2002/95/EC
- · Designed and qualified for industrial level

DESCRIPTION

State of the art, ultralow V_F , soft-switching hyperfast rectifiers optimized for Discontinuous (Critical) Mode (DCM) Power Factor Correction (PFC).

The minimized conduction loss, optimized stored charge and low recovery current minimize the switching losses and reduce over dissipation in the switching element and snubbers.

The device is also intended for use as a freewheeling diode in power supplies and other power switching applications.

APPLICATIONS

AC-DC SMPS 70 W to 400 W

e.g. laptop and printer AC adaptors, desktop PC, TV and monitor, games units and DVD AC-DC power supplies.

ABSOLUTE MAXIMUM RATINGS					
PARAMETER	SYMBOL	TEST CONDITIONS	VALUES	UNITS	
Peak repetitive reverse voltage	V _{RRM}		600	V	
Average registed forward averagt		T _C = 154 °C	15		
Average rectified forward current	I _{F(AV)}	T _C = 120 °C (FULL-PAK)	15	٨	
Non-repetitive peak surge current	I _{FSM}	T _J = 25 °C	250	A	
Peak repetitive forward current	I _{FM}		30		
Operating junction and storage temperatures	T _J , T _{Stg}		- 65 to 175	°C	

ELECTRICAL SPECIFICATIONS (T _J = 25 °C unless otherwise specified)							
PARAMETER	SYMBOL	TEST CONDITIONS	MIN.	TYP.	MAX.	UNITS	
Breakdown voltage, blocking voltage	V _{BR} , V _R	I _R = 100 μA	600	-	-		
Forward voltage V _F	VF	I _F = 15 A	-	0.99	1.05	V	
Forward voltage V _F		I _F = 15 A, T _J = 150 °C	-	0.85	0.92		
		$V_{R} = V_{R}$ rated	-	0.1	10		
Reverse leakage current I _R	^I R	$T_J = 150 \ ^{\circ}C, \ V_R = V_R \ rated$	-	15	120	μΑ	
Junction capacitance	CT	V _R = 600 V	-	20	-	pF	
Series inductance	L _S	Measured lead to lead 5 mm from package body	-	8.0	-	nH	

* Pb containing terminations are not RoHS compliant, exemptions may apply

Vishay High Power Products

Ultralow V_F Hyperfast Rectifier for Discontinuous Mode PFC, 15 A FRED Pt^{TM}

DYNAMIC RECOVERY CHARACTERISTICS ($T_c = 25 \text{ °C}$ unless otherwise specified)							
PARAMETER	SYMBOL	TEST CO	MIN.	TYP.	MAX.	UNITS	
Reverse recovery time t _{rr}		I _F = 1 A, dI _F /dt = 100 A/µs, V _R = 30 V		-	60	120	
		$I_F = 15 \text{ A}, \text{ d}I_F/\text{d}t = 100 \text{ A}/\mu\text{s}, \text{ V}_R = 30 \text{ V}$		-	190	270	
	۲r	T _J = 25 °C		-	220	-	ns
		T _J = 125 °C		-	320	-	
Peak recovery current I _{RRM}	1	T _J = 25 °C	I _F = 15 A dI _F /dt = 200 A/μs V _R = 390 V	-	19	-	A
	IRRM	T _J = 125 °C		-	26	-	
Reverse recovery charge	Q _{rr}	T _J = 25 °C		-	2.2	-	μC
		T _J = 125 °C		-	4.3	-	

THERMAL - MECHANICAL SPECIFICATIONS						
PARAMETER	SYMBOL	TEST CONDITIONS	MIN.	TYP.	MAX.	UNITS
Maximum junction and storage temperature range	T _J , T _{Stg}		- 65	-	175	°C
Thermal resistance,	R _{thJC}		-	1.0	1.3	
junction to case (FULL-PAK)	T thJC		-	3.0	3.5	
Thermal resistance, junction to ambient per leg	R _{thJA}	Typical socket mount	-	-	70	°C/W
Thermal resistance, case to heatsink	R _{thCS}	Mounting surface, flat, smooth and greased	-	0.5	-	
Weight			-	2.0	-	g
			-	0.07	-	OZ.
Mounting torque			6.0 (5.0)	-	12 (10)	kgf ⋅ cm (lbf ⋅ in)
Marking davias		Case style TO-220AC	15ETL06			
Marking device		Case style TO-220AC FULL-PAK	15ETL06FP			

Ultralow V_F Hyperfast Rectifier for Vishay High Power Products Discontinuous Mode PFC, 15 A FRED Pt^{TM}

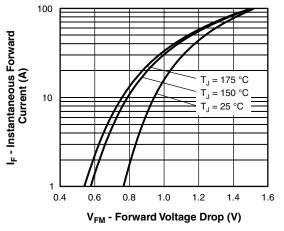


Fig. 1 - Maximum Forward Voltage Drop Characteristics

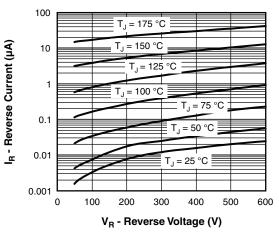


Fig. 2 - Typical Values of Reverse Current vs. Reverse Voltage

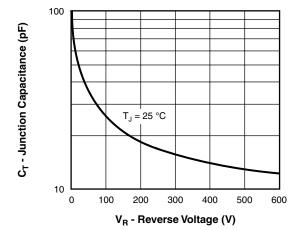
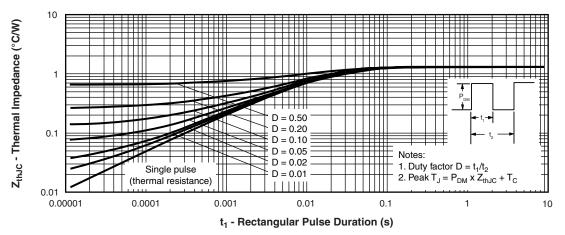
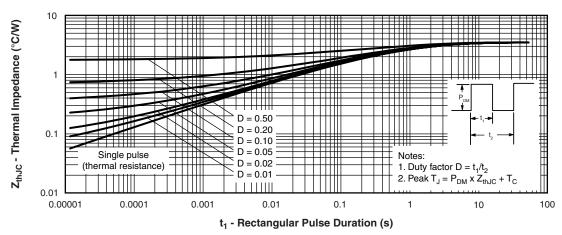
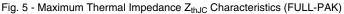
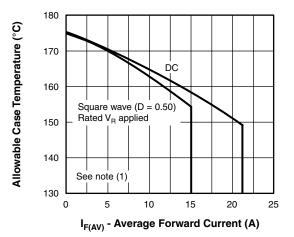
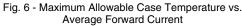


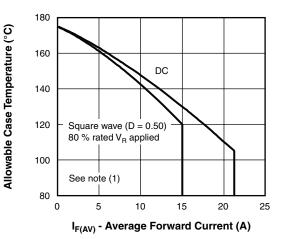
Fig. 3 - Typical Junction Capacitance vs. Reverse Voltage

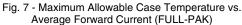




Fig. 4 - Maximum Thermal Impedance Z_{thJC} Characteristics




Vishay High Power Products


Ultralow V_F Hyperfast Rectifier for Discontinuous Mode PFC, 15 A FRED PtTM



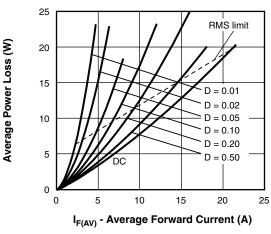


Fig. 8 - Forward Power Loss Characteristics

Note

⁽¹⁾ Formula used: $T_C = T_J - (Pd + Pd_{REV}) \times R_{thJC}$;

Pd = Forward power loss = $I_{F(AV)} \times V_{FM}$ at $(I_{F(AV)}/D)$ (see fig. 8); Pd_{REV} = Inverse power loss = $V_{R1} \times I_R (1 - D)$; I_R at V_{R1} = Rated V_R

Ultralow V_F Hyperfast Rectifier for Vishay High Power Products Discontinuous Mode PFC, 15 A FRED Pt^{TM}

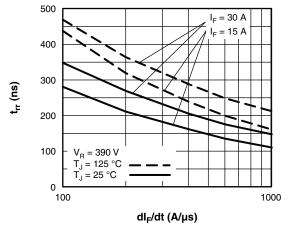


Fig. 9 - Typical Reverse Recovery Time vs. dl_F/dt

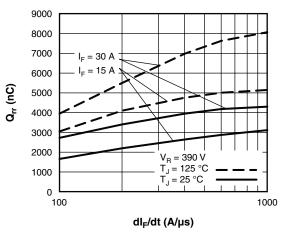


Fig. 10 - Typical Stored Charge vs. dl_F/dt

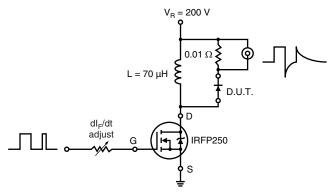
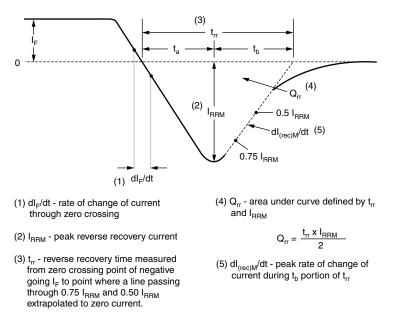
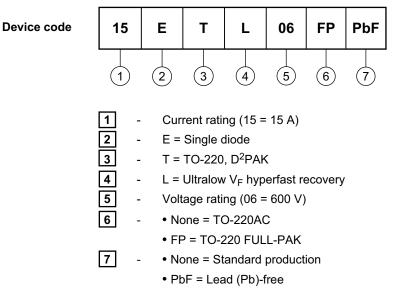


Fig. 11 - Reverse Recovery Parameter Test Circuit




Fig. 12 - Reverse Recovery Waveform and Definitions

Vishay High Power Products

Ultralow V_F Hyperfast Rectifier for Discontinuous Mode PFC, 15 A FRED Pt^{TM}

ORDERING INFORMATION TABLE

Tube standard pack quantity: 50 pieces

LINKS TO RELATED DOCUMENTS					
Dimensions www.vishay.com/doc?95039					
Part marking information	www.vishay.com/doc?95045				
SPICE model	www.vishay.com/doc?95270				

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and/or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk and agree to fully indemnify and hold Vishay and its distributors harmless from and against any and all claims, liabilities, expenses and damages arising or resulting in connection with such use or sale, including attorneys fees, even if such claim alleges that Vishay or its distributor was negligent regarding the design or manufacture of the part. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.