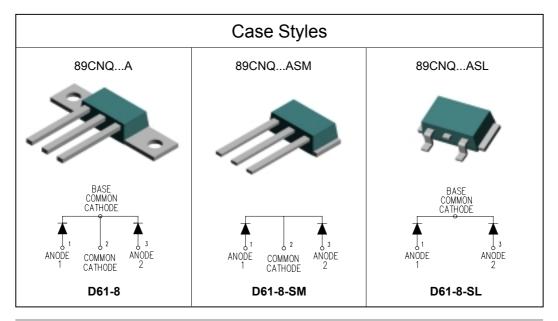
International Rectifier

89CNQ...A Series

SCHOTTKY RECTIFIER New GenIII D-61 Package

80 Amp

Major Ratings and Characteristics


Cha	racteristics	89CNQA	Units
I _{F(AV)}	Rectangular waveform	80	Α
V _{RRM}	1	135 to 150	V
I _{FSM}	@ tp = 5 µs sine	4300	Α
V _F	@40 Apk, T _J = 125 °C (perleg)	0.69	V
Т	range	- 55 to 175	°C

Description/Features

The 89CNQ...A center tap Schottky rectifier module has been optimized for very low forward voltage drop, with moderate leakage. The proprietary barrier technology allows for reliable operation up to 175°C junction temperature. Typical applications are in switching power supplies, converters, free wheeling diodes, and reverse battery protection.

- 175 °C T operation
- Center tap module
- High purity, high temperature epoxy encapsulation for enhanced mechanical strength and moisture resistance
- Low forward voltage drop
- . High frequency operation
- Guard ring for enhanced ruggedness and long term reliability

New fully transfer-mold low profile, small footprint, high current package

89CNQ...A Series

Bulletin PD-20046 rev. C 07/02

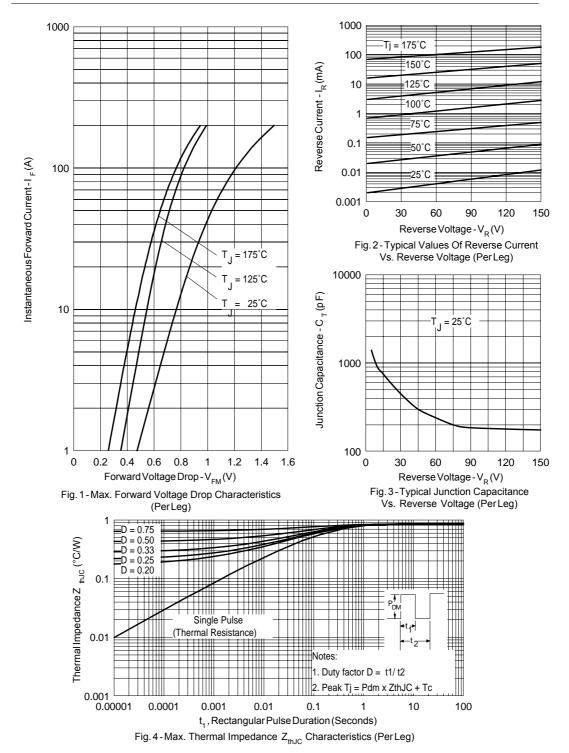
International TOR Rectifier

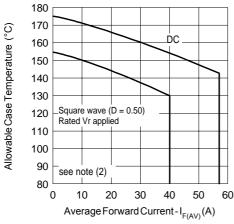
Voltage Ratings

Part number		89CNQ135A	89CNQ150A	
V _R Max. DC Reverse Voltage (V)		405	150	
V _{RWM} Max. Working Peak Reve	rse Voltage (V)	135	150	

Absolute Maximum Ratings

	Parameters		89CNQ	Units	Conditions	
I _{F(AV)}	Max. Av. Forward Current (Posee Fig. 5 (Pose Fig. 5)	PerLeg) PerDevice)	40 80	Α	50% duty cycle @ T_C = 130°C, (Rated V_R)	rectangularwaveform
I _{FSM}	Max. Peak One Cycle Non-Re	epetitive	4300	Α	5μs Sine or 3μs Rect. pulse	Following any rated load condition and with
	Surge Current (Per Leg) Se	ee Fig. 7	500	^	10ms Sine or 6ms Rect. pulse	rated Vr applied
E _{AS}	Non-Repetitive Avalanche Energy (Per Leg)		9	mJ	$T_J = 25 ^{\circ}\text{C}, I_{AS} = 1 \text{Amps}, L = 18$	8 mH
I _{AR}	Repetitive Avalanche Current (Per Leg)		1.0	Α	Current decaying linearly to ze Frequency limited by T _J max. \	•


Electrical Specifications


Parameters		89CNQ	Units	C	Conditions
V _{FM}	Max. Forward Voltage Drop	0.99	V	@ 40A	T ₁ = 25 °C
'''	(Per Leg) See Fig. 1 (1)	1.14	V	@ 80A	1 _J = 23 0
		0.69	V	@ 40A	T - 405 °C
		0.78	V	@ 80A	T _J = 125 °C
I _{RM}	Typical Reverse Leakage Current	1.5	mA	T _J = 25 °C	V _P = rated V _P
	(Per Leg) See Fig. 2 (1)	21	mA	T _J = 125 °C	V _R rated V _R
C_T	C _T Max. Junction Capacitance (Per Leg)		pF	$V_R = 5V_{DC}$, (test signal range 100Khz to 1Mhz) 25°C	
L _S	Typical Series Inductance (Per Leg)	5.5	nΗ	Measured lead to lead 5mm from package body	
dv/dt	Max. Voltage Rate of Change (Rated V_R)	10000	V/ µs		

⁽¹⁾ Pulse Width < 300µs, Duty Cycle <2%

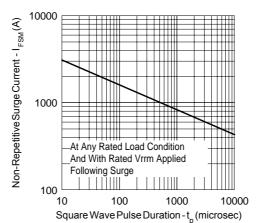
Thermal-Mechanical Specifications

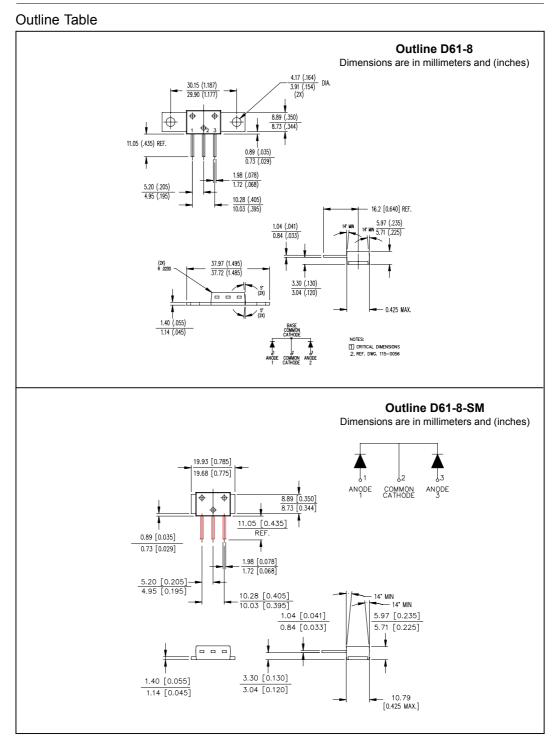
	Parameters		89CNQ	Units	Conditions
T	Max. Junction Temperature Range		-55 to 175	°C	
T _{stg}	Max. Storage Temperature Range		-55 to 175	°C	
R _{thJC}	Max. Thermal Resistance Junction to Case (Per Leg)		0.85	°C/W	DC operation
R _{thJC}	Max. Thermal Resistance Junction to Case (Per Package)		0.42	°C/W	DC operation
R _{thCS}	Typical Thermal Resistance, Case to Heatsink (D61-8 Only)		0.30	°C/W	Mounting surface, smooth and greased Device flatness < 5 mils
wt	Approximate Weight		7.8(0.28)	g(oz.)	
Т	Mounting Torque	Min.	40 (35)	Kg-cm	
	(D61-8 Only)	Max.	58 (50)	(lbf-in)	

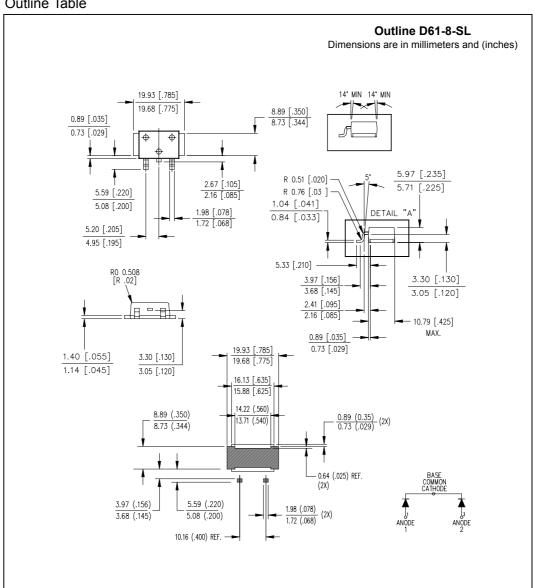
Average Power Loss (Watts)

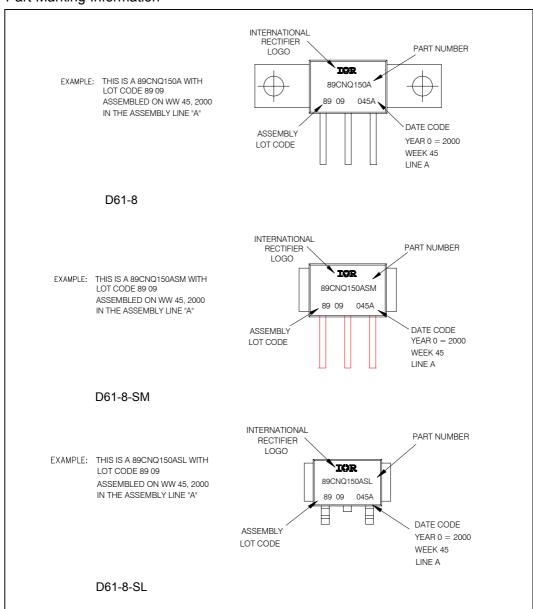
Fig. 5-Max. Allowable Case Temperature Vs. Average Forward Current (PerLeg)

 $\label{eq:AverageForwardCurrent-l} \text{V}_{\text{F(AV)}}(A) \\ \text{Fig. 6-Forward Power Loss Characteristics} \\ \text{(PerLeg)}$






Fig. 7-Max. Non-Repetitive Surge Current (Per Leg)


(2) Formula used: $T_C = T_J - (Pd + Pd_{REV}) \times R_{thJC}$; $Pd = Forward PowerLoss = I_{F(AV)} \times V_{FM} @ (I_{F(AV)} / D)$ (see Fig. 6); $Pd_{REV} = Inverse PowerLoss = V_{R1} \times I_R (1 - D)$; $I_R @ V_{R1} = Rated V_R$

Outline Table

Part Marking Information

International

Rectifier

89CNQ...A Series
Bulletin PD-20046 rev. C 07/02

Data and specifications subject to change without notice. This product has been designed and qualified for Industrial Level.

Qualification Standards can be found on IR's Web site.

International TOR Rectifier

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7309
Visit us at www.irf.com for sales contact information. 07/02