
Vishay High Power Products

Schottky Rectifier, 2 x 15 A

SHAY

PRODUCT SUMMARY				
I _{F(AV)} 2 x 15 A				
V _R	50/60 V			

FEATURES

- 150 °C T_J operation
- Center tap configuration
- Very low forward voltage drop
- High frequency operation
- High purity, high temperature epoxy encapsulation for enhanced mechanical strength and moisture resistance
- Guard ring for enhanced ruggedness and long term reliability
- Designed and qualified for Q101 level

DESCRIPTION

This center tap Schottky rectifier has been optimized for very low forward voltage drop, with moderate leakage. The proprietary barrier technology allows for reliable operation up to 150 °C junction temperature. Typical applications are in switching power supplies, converters, freewheeling diodes, and reverse battery protection.

MAJOR RATINGS AND CHARACTERISTICS						
SYMBOL	CHARACTERISTICS	VALUES	UNITS			
I _{F(AV)}	Rectangular waveform	30	A			
V _{RRM}		50/60	V			
I _{FSM}	$t_p = 5 \ \mu s \ sine$	1000	A			
V _F	15 Apk, $T_J = 125 \ ^{\circ}C$ (per leg)	0.56	V			
TJ	Range	- 55 to 150	°C			

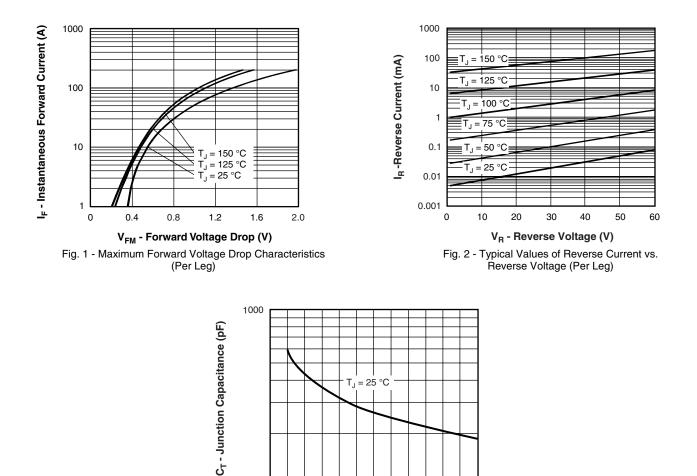
VOLTAGE RATINGS				
PARAMETER SYMBOL		30CTQ050S 30CTQ050-1	30CTQ060S 30CTQ060-1	UNITS
Maximum DC reverse voltage	V _R	50	60	V
Maximum working peak reverse voltage	V _{RWM}	50	00	v

ABSOLUTE MAXIMUM RATINGS						
PARAMETER	SYMBOL	L TEST CONDITIONS VALUES		VALUES	UNITS	
Maximum average per device		50 % duty cycle at $T_{\rm C}$ = 105 °C, rectangular waveform		30		
See fig. 5 per leg	$I_{F(AV)}$ 50 % duty cycle at $I_C = 105$ °C, rectangular waveform		15	А		
Maximum peak one cycle non-repetitive IFSM surge current per leg IFSM See fig. 7 IFSM		5 µs sine or 3 µs rect. pulse	Following any rated load condition and with rated V _{RRM} applied	1000		
		10 ms sine or 6 ms rect. pulse		260		
Non-repetitive avalanche energy per leg	E _{AS}	$T_J = 25 \text{ °C}, I_{AS} = 1.50 \text{ A}, L = 11.5 \text{ mH}$ 13		13	mJ	
Repetitive avalanche current per leg	I _{AR}	Current decaying linearly to zero in 1 μ s Frequency limited by T _J maximum V _A = 1.5 x V _R typical 1.50		1.50	А	

30CTQ...S/30CTQ...-1

Vishay High Power Products Schottky Rectifier, 2 x 15 A

ELECTRICAL SPECIFICATIONS					
SYMBOL	TEST CONDITIONS		VALUES	UNITS	
V _{FM} ⁽¹⁾	15 A	T _J = 25 °C	0.62	v	
	30 A		0.82		
	15 A	T _J = 125 °C	0.56		
	30 A		0.71		
I _{RM} ⁽¹⁾	T _J = 25 °C	V _R = Rated V _R	0.80	mA	
	T _J = 125 °C		45		
V _{F(TO)}	T _J = T _J maximum		0.39	V	
r _t			8.47	mΩ	
CT	$V_R = 5 V_{DC}$ (test signal range 100 kHz to 1 MHz) 25 °C		720	pF	
L _S	Measured lead to lead 5 mm from package body		8.0	nH	
dV/dt	Rated V _R 10 000		V/µs		
	SYMBOL V _{FM} ⁽¹⁾ I _{RM} ⁽¹⁾ V _{F(TO)} r _t C _T L _S	$\begin{tabular}{ c c c c c } \hline SYMBOL & TEST CONIC V_{FM} (1) & 15 A & $	$\begin{tabular}{ c c c c c } \hline SYMBOL & $TEST CONDITIONS$ \\ \hline SYMBOL & $T_J = 25 \ ^{\circ}C$ \\ \hline \hline $30 \ A$ & $T_J = 25 \ ^{\circ}C$ \\ \hline \hline $15 \ A$ & $T_J = 125 \ ^{\circ}C$ \\ \hline \hline $30 \ A$ & $T_J = 125 \ ^{\circ}C$ \\ \hline \hline $30 \ A$ & $T_J = 125 \ ^{\circ}C$ \\ \hline \hline $T_J = 125 \ ^{\circ}C$ & $V_R = Rated \ V_R$ \\ \hline \hline $V_{F(TO)}$ & $T_J = 125 \ ^{\circ}C$ & $V_R = Rated \ V_R$ \\ \hline \hline $V_{F(TO)}$ & $T_J = T_J$ maximum \\ \hline T_t & $T_J = T_J$ maximum \\ \hline \hline C_T & $V_R = 5 \ V_{DC}$ (test signal range 100 \ kHz to 1 \ MHz) 25 \ ^{\circ}C$ \\ \hline L_S & Measured lead to lead 5 \ mm from package body \\ \hline \end{tabular}$	$\begin{array}{c c c c c c c c c } \hline SYMBOL & TEST CONDITIONS & VALUES \\ \hline SYMBOL & TJ = 25 \ ^{\circ}C & 0.62 \\ \hline 30 \ A & T_J = 25 \ ^{\circ}C & 0.82 \\ \hline 15 \ A & T_J = 125 \ ^{\circ}C & 0.56 \\ \hline 30 \ A & T_J = 125 \ ^{\circ}C & 0.71 \\ \hline 1_{RM} \ ^{(1)} & \hline T_J = 25 \ ^{\circ}C & V_R = Rated \ V_R & 0.80 \\ \hline T_J = 125 \ ^{\circ}C & 45 \\ \hline V_{F(TO)} & & 0.39 \\ \hline r_t & & 0.39 \\ \hline r_t & & 0.39 \\ \hline R_S \ T_J = 5 \ V_{DC} \ (test signal range 100 \ kHz to 1 \ MHz) \ 25 \ ^{\circ}C & 720 \\ \hline L_S & Measured lead to lead 5 \ mm \ from \ package \ body & 8.0 \\ \hline \end{array}$	


Note

 $^{(1)}\,$ Pulse width < 300 $\mu s,$ duty cycle < 2 %

THERMAL - MECHANICAL SPECIFICATIONS					
PARAMETER		SYMBOL	TEST CONDITIONS	VALUES	UNITS
Maximum junction and storage temperature range		T _J , T _{Stg}		- 55 to 150	°C
Maximum thermal resistance, junction to case per leg		D	DC operation	3.25	°C/W
Maximum thermal resistance, junction to case per package		R _{thJC}		1.63	
Typical thermal resistance, case to heatsink		R _{thCS}	Mounting surface, smooth and greased	0.50	
				2	g
Approximate weight				0.07	oz.
Mounting torgue	minimum			6 (5)	kgf ⋅ cm
	maximum			12 (10)	(lbf ⋅ in)
Marking device				30CTQ050S	
			Case style D ² PAK	30CTQ060S	
				30CTQ050-1	
			Case style TO-262	30CTQ060-1	

Schottky Rectifier, 2 x 15 A Vishay High Power Products

100 L 0

Single pulse

(thermal resistance)

0.001

10

1

0.1

0.01

0.001

ППП

D = 0.75 2 D = 0.50 4

D = 0.33

D = 0.25

= 0.20

+++

0.0001

Z_{thJC} - Thermal Impedance (°C/W)

Document Number: 93958

Revision: 22-Aug-08

10

20

Ħ

11

0.01

30

V_R - Reverse Voltage (V) Fig. 3 - Typical Junction Capacitance vs. Reverse Voltage (Per Leg)

40

ΠΠ

 $t_1 \mbox{ - Rectangular Pulse Duration (s)} \label{eq:t1}$ Fig. 4 - Maximum Thermal Impedance Z_{thJC} Characteristics (Per Leg)

0.1

50

60

Notes:

1

1. Duty factor $D = t_1/t_2$

2. Peak T_J = P_{DM} x Z_{thJC} + T_C

1.1.1.1.1

10

100

30CTQ....S/30CTQ....-1

Vishay High Power Products Schottky Rectifier, 2 x 15 A

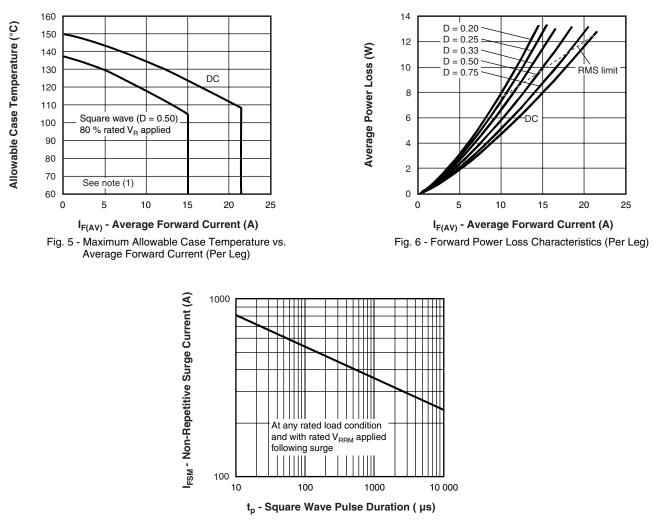


Fig. 7 - Maximum Non-Repetitive Surge Current (Per Leg)

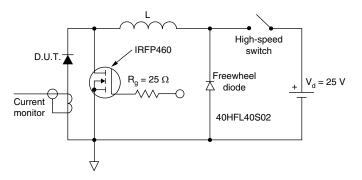
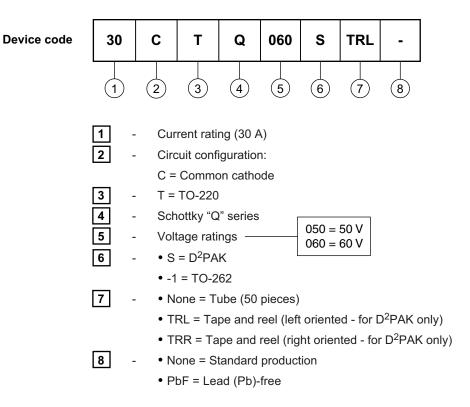


Fig. 8 - Unclamped Inductive Test Circuit

Note

(1)


 $\begin{array}{l} \mbox{Formula used: } T_C = T_J - (Pd + Pd_{REV}) \ x \ R_{thJC}; \\ Pd = \mbox{Forward power loss} = I_{F(AV)} \ x \ V_{FM} \ at \ (I_{F(AV)}/D) \ (see \ fig. \ 6); \\ Pd_{REV} = \ Inverse \ power \ loss = V_{R1} \ x \ I_R \ (1 - D); \ I_R \ at \ V_{R1} = 10 \ V \end{array}$

www.vishay.com 4

Schottky Rectifier, 2 x 15 A Vishay High Power Products

ORDERING INFORMATION TABLE

LINKS TO RELATED DOCUMENTS				
Dimensions	http://www.vishay.com/doc?95014			
Part marking information	http://www.vishay.com/doc?95008			
Packaging information	http://www.vishay.com/doc?95032			

Vishay

Disclaimer

All product specifications and data are subject to change without notice.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained herein or in any other disclosure relating to any product.

Vishay disclaims any and all liability arising out of the use or application of any product described herein or of any information provided herein to the maximum extent permitted by law. The product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein, which apply to these products.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications unless otherwise expressly indicated. Customers using or selling Vishay products not expressly indicated for use in such applications do so entirely at their own risk and agree to fully indemnify Vishay for any damages arising or resulting from such use or sale. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

Product names and markings noted herein may be trademarks of their respective owners.