

Vishay BCcomponents

AC and Pulse Double Metallized Polypropylene Film Capacitors **MMKP Radial Potted Type**

(1) |F - F'| < 0.3 mmF = 7.5 + 0.6 - 0.1 mm

APPLICATIONS

Where steep pulses occur e.g. SMPS (switch mode power supplies). Electronic lighting e.g. Ballast. Motor control circuits. S-correction. For flyback applications please use 1400 V series.

REFERENCE SPECIFICATIONS

IEC 60384-17

MARKING

C-value; tolerance; rated voltage; sub-class; manufacturer's type; code for dielectric material; code for factory of origin; manufacturer; year and week of manufacture

DIELECTRIC

Polypropylene film

ELECTRODES

Metallized

ENCAPSULATION

Flame retardant plastic case and epoxy resin

CONSTRUCTION

Internal serial construction

RATED (DC) VOLTAGE

250 V, 400 V, 630 V, 1000 V, 1400 V, 1600 V, 2000 V, 2500 V

RATED (AC) VOLTAGE

125 V, 200 V, 220 V, 350 V, 500 V, 550 V, 700 V, 900 V

RATED PEAK-TO-PEAK VOLTAGE

350 V, 560 V, 630 V, 1000 V, 1400 V, 1600 V, 2000 V, 2500 V

FEATURES

7.5 mm bent back pitch. 15 mm to 27.5 mm lead pitch. Low contact resistance. Low loss dielectric. Small dimensions for high density packaging. Supplied loose in box and taped on reel

COMPLIANT

Material categorization: For definitions of compliance please see www.vishay.com/doc?99912

ENCAPSULATION

Plastic case, epoxy resin sealed, flame retardant UL-class 94 V-0

CLIMATIC CATEGORY

55/105/56

CAPACITANCE RANGE (E24 SERIES)

 $0.001 \mu F$ to $2.7 \mu F$

CAPACITANCE TOLERANCE

±5%

LEADS

Tinned wire

RATED (DC) TEMPERATURE

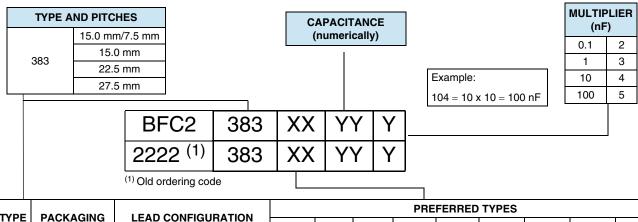
85 °C

RATED (AC) TEMPERATURE

105 °C

MAXIMUM APPLICATION TEMPERATURE

105 °C


DETAIL SPECIFICATION

For more detailed data and test requirements contact: dc-film@vishay.com

Vishay BCcomponents AC and Pulse Double Metallized Polypropylene Film Capacitors MMKP Radial Potted Type

COMPOSITION OF CATALOG NUMBER

TYPE	PACKAGING	LEAD CONFIGURATION	PREFERRED TYPES								
ITPE	PACKAGING LEAD CONFIGURATIO		C-TOL.	250 V	400 V	630 V	1000 V	1400 V	1600 V	2000 V	2500 V
	Loose in box	Lead length 3.5 mm ± 0.3 mm	±5%	00	10	20	30	40	50	60	70
383	Taped on reel	H = 16.0 mm; P ₀ = 15.0 mm		03	13	23	33	43	53	63	-
	(bent back to 7.5 mm) (1)	reel diameter = 500 mm	±5%	Dimensions of this code numbers stay between brackets							
			ON REQUEST								
	Loose in box	Lead length 5.0 mm ± 1.0 mm	±5%	01	11	21	31	41	51	61	71
	Loose in box	Lead length 25.0 mm ± 2.0 mm	±5%	04	14	24	34	44	54	64	74
	Taped on reel	H = 18.5 mm; P ₀ = 12.7 mm	±5%	02	12	22	32	42	52	62	72
383	Taped on reel	H = 16.0 mm; P ₀ = 15.0 mm		05	15	25	35	45	55	65	-
	(bent back to 7.5 mm) ⁽¹⁾	reel diameter = 356 mm	±5%	5 % Dimensions of this code numbers stay between brackets							
	Taped on reel (bent back to 10.0 mm) ⁽¹⁾	H = 16.0 mm; P ₀ = 15.0 mm reel diameter = 500 mm	±5%	08	18	28	38	48	58	68	-

SPECIFIC REFERENCE DATA (250 Vdc)

DESCRIPTION	VA	LUE		
Tangent of loss angle:	at 10 kHz	at 100 kHz		
C ≤ 0.15 μF	≤ 5 x 10 ⁻⁴	≤ 20 x 10 ⁻⁴		
0.15 μF < C ≤ 0.39 μF	≤ 5 x 10 ⁻⁴	≤ 25 x 10 ⁻⁴		
$0.39 \ \mu F < C \le 0.56 \ \mu F$	≤ 10 x 10 ⁻⁴	≤ 25 x 10 ⁻⁴		
$0.56 \ \mu F < C \le 0.82 \ \mu F$	≤ 10 x 10 ⁻⁴	$\leq 40 \times 10^{-4}$		
0.82 μF < C ≤ 1.2 μF	≤ 10 x 10 ⁻⁴	\leq 50 x 10 ⁻⁴		
1.2 μF < C ≤ 1.8 μF	≤ 10 x 10 ⁻⁴	≤ 65 x 10 ⁻⁴		
1.8 μF < C ≤ 2.2 μF	≤ 15 x 10 ⁻⁴	≤ 75 x 10 ⁻⁴		
$2.2 \mu F < C \le 2.7 \mu F$	≤ 15 x 10 ⁻⁴	≤ 85 x 10 ⁻⁴		
Rated voltage pulse slope (dU/d _t)R:				
C ≤ 0.15 μF	450 V/μs			
$0.15 \ \mu F < C \le 0.39 \ \mu F$	900	V/μs		
$0.39 \ \mu F < C \le 0.82 \ \mu F$	290	V/μs		
$0.82 \ \mu F < C \le 2 \ \mu F$	190	V/μs		
$2 \mu F < C \le 2.7 \mu F$	130 V/μs			
R between leads, for C \leq 1 μ F at 100 V, 1 min	> 100 0	000 MΩ		
RC between leads, for C $>$ 1 μ F at 100 V, 1 min	> 100	000 s		
R between leads and case, 100 V, 1 min	> 30 0	00 MΩ		
Ionization (AC) voltage (typical value) at 50 pC peak discharge	> 220 V			
Withstanding (DC) voltage (cut off current 10 mA), rise time 100 V/s	400 V, 1 min			
Withstanding (DC) voltage between leads and case	2840 V, 1 min			
Maximum application temperature	105	S °C		

www.vishay.com

For technical questions, contact: dc-film@vishay.com

⁽¹⁾ For detailed tape specifications refer to "Packaging Information" www. vishay.com/doc?28139 or end of catalog

AC and Pulse Double Metallized Polypropylene Film Capacitors MMKP Radial Potted Type

Vishay BCcomponents

 U_{Rdc} = 250 V; U_{Rac} = 125 V; U_{pp} = 350 V; C-tol. = ± 5 %

			CATALOG NUMBER BFC2 383 XXYYY AND PACKAGING							
	DIMENSIONS		LOOSE IN BOX		REEL			C-VALUE		
C	DIMENSIONS w x h (h') x l	MAŞŞ	Leads	Leads	Original pitch	Pitch = 7.5 m	ım (bent back)			
(μF)	(mm)	(g) ⁽¹⁾	3.5 ± 0.3 mm	25.0 ± 2.0 mm	Original pitch	Ø 500 mm	Ø 356 mm	үүү		
	, ,			XX (SPQ)	XX (SPQ)	XX (SPQ)	XX (SPQ)			
Pitch =	15 mm ± 0.4 mm; d _t = 0.80) mm ± 0	.08 mm		Pitch = 15 mm	Pitch = 7.5 m	m (bent back)			
0.082 0.091 0.1	5.0 x 11.0 (13.0) x 17.5	1.1	00 (1250)	04 (1000)	02 (1100)	03 (950)	05 (550)	823 913 104		
0.11 0.12 0.13 0.15	6.0 x 12.0 (14.0) x 17.5	1.4	00 (1000)	04 (1000)	02 (900)	03 (800)	05 (450)	114 124 134 154		
0.16 0.18 0.2	7.0 x 13.5 (15.5) x 17.5	1.8	00 (750)	04 (500)	02 (800)	03 (700)	05 (400)	164 184 204		
0.22 0.24 0.27 0.3	8.5 x 15.0 (17.0) x 17.5	2.6	00 (750)	04 (500)	02 (650)	03 (550)	05 (300)	224 244 274 304		
0.33 0.36 0.39	10.0 x 16.5 (18.5) x 17.5	3.3	00 (500)	04 (450)	02 (600)	03 (500)	05 (250)	334 364 394		

Notes

 U_{Rdc} = 250 V; U_{Rac} = 125 V; U_{pp} = 350 V; C-tol. = ± 5 %

			CATALOG NUMBER BFC2 383 XXYYY AND PACKAGING					
_	DIMENSIONS		LOOSE IN BOX		REEL	C-VALUE		
C (µF)	w x h x l (mm)	MASS (g) ⁽¹⁾			Original pitch	YYY		
	(,		XX (SPQ)	XX (SPQ)	XX (SPQ)			
Pitch = 2	22.5 mm \pm 0.4 mm; $d_t = 0.8$	80 mm ± 0.0	8 mm		Pitch = 22.5 mm			
0.43	7.0 x 116.5 x 26.0	3.0	00 (200)	04 (250)	02 (550)	434		
0.47						474		
0.51	8.5 x 18.0 x 26.0	4.2	00	04	02	514		
0.56	0.5 x 10.0 x 20.0	4.2	(200)	(250)	(450)	564		
0.62						624		
0.68			00	04	02	684		
0.75	10.0 x 19.5 x 26.0	5.3	(200)	(200)	(350)	754		
0.82				(200)	·	824		
Pitch = 2	$27.5 \text{ mm} \pm 0.4 \text{ mm}; d_t = 0.8$	80 mm ± 0.0	8 mm		Pitch = 27.5 mm			
0.91						914		
1.0	11.0 x 21.0 x 31.0	8.0	00	04		105		
1.1	11.0 x 21.0 x 31.0	0.0	(750)	(125)		115		
1.2						125		
1.3			00	04		135		
1.5	13.0 x 23.0 x 31.0	9.7	(500)	(125)	_	155		
1.6			(000)	(120)		165		
1.8	15.0 x 25.0 x 31.0	12.6	00	04		185		
2.0	10.0 % 20.0 % 01.0	12.0	(100)	(125)		205		
2.2			00	04		225		
2.4	18.0 x 28.0 x 31.0	16.3	(100)	(100)		245		
2.7				(100)		275		

Notes

Document Number: 28124 Revision: 08-Aug-2018 For technical questions, contact: dc-film@vishay.com

⁽¹⁾ Net weight for short lead products only

[•] SPQ = Standard Packaging Quantity

⁽¹⁾ Net weight for short lead products only

[•] SPQ = Standard Packaging Quantity

Vishay BCcomponents AC and Pulse Double Metallized Polypropylene Film Capacitors MMKP Radial Potted Type

SPECIFIC REFERENCE DATA (400 Vdc)

DESCRIPTION	VALUE			
Tangent of loss angle:	at 10 kHz	at 100 kHz		
$C \le 0.22 \mu\text{F}$	≤ 5 x 10 ⁻⁴	≤ 20 x 10 ⁻⁴		
$0.22 \ \mu F < C \le 0.33 \ \mu F$	≤ 10 x 10 ⁻⁴	\leq 35 x 10 ⁻⁴		
$0.33 \ \mu F < C \le 0.43 \ \mu F$	≤ 10 x 10 ⁻⁴	$\leq 40 \times 10^{-4}$		
$0.43 \ \mu F < C \le 0.68 \ \mu F$	≤ 10 x 10 ⁻⁴	\leq 50 x 10 ⁻⁴		
$0.68 \ \mu F < C \le 0.82 \ \mu F$	≤ 10 x 10 ⁻⁴	$\leq 55 \times 10^{-4}$		
$0.82 \mu F < C \le 1.2 \mu F$	≤ 10 x 10 ⁻⁴	\leq 60 x 10 ⁻⁴		
$1.2 \mu F < C \le 1.5 \mu F$	≤ 10 x 10 ⁻⁴	≤ 65 x 10 ⁻⁴		
Rated voltage pulse slope (dU/dt) _R :				
$C \le 0.082 \mu\text{F}$	600 V/μs			
$0.082 \ \mu F < C \le 0.22 \ \mu F$	1200 V/μs			
$0.22 \ \mu F < C \le 0.43 \ \mu F$	410 V/μs			
$0.42 \mu F < C \le 1.1 \mu F$	260 V/μs			
$1.1 \ \mu F < C \le 1.5 \ \mu F$	180 V/μs			
R between leads, for C ≤ 1 μF at 100 V, 1 min	> 100 00	00 ΜΩ		
RC between leads, for C >1 µF at 100 V, 1 min	> 100 (000 s		
R between leads and case, 100 V, 1 min	> 30 00	0 ΜΩ		
Ionization (AC) voltage (typical value) at 50 pC peak discharge	> 220 V			
Withstanding (DC) voltage (cut off current 10 mA), rise time 100 V/s	560 V, 1 min			
Withstanding (DC) voltage between leads and case	2840 V, 1 min			
Maximum aplication temperature	105	°C		

 U_{Rdc} = 400 V; U_{Rac} = 200 V; U_{pp} = 560 V; C-tol. = ± 5 %

			CATALOG NUMBER BFC2 383 XXYYY AND PACKAGING							
	DIMENSIONS		LOOSE IN BOX				C-VALUE			
C	w x h (h') x l	MASS	Leads	Leads	Original pitch	Pitch = 7.5 mm (bent back)				
(µF)	(mm)	(g) ⁽¹⁾	$3.5 \pm 0.3 \text{ mm}$	25.0 ± 2.0 mm	Original pitch	Ø 500 mm	Ø 356 mm	YYY		
	, ,		XX	XX	XX	XX	XX			
			(SPQ)	(SPQ)	(SPQ)	(SPQ)	(SPQ)			
Pitch =	15 mm \pm 0.4 mm; $d_t = 0.80$) mm ± 0.	.08 mm		Pitch = 15 mm	Pitch = 7.5 m	m (bent back)			
0.047			10	14	12	13	15	473		
0.051	5.0 x 11.0 (13.0) x 17.5	1.1	(1250)	(1000)	(1100)	(950)	(550)	513		
0.056			(1230)	(1000)	(1100)	(330)	(550)	563		
0.062								623		
0.068	60×100(140)×175	4.4	10	14	12	13	15	683		
0.075	6.0 x 12.0 (14.0) x 17.5	1.4	(1000)	(1000)	(900)	(800)	(450)	753		
0.082								823		
0.091			4.0	4.4	40	40	4=	913		
0.1	7.0 x 13.5 (15.5) x 17.5	1.8	10	14	12	13 (700)	15	104		
0.11			(750)	(500)	(800)	(700)	(400)	114		
0.12								124		
0.13	0.5 45 0 /47 0) 47 5	0.5	10	14	12	13	15	134		
0.15	8.5 x 15.0 (17.0) x 17.5	2.5	(750)	(500)	(650)	(550)	(300)	154		
0.16								164		
0.18			40	44	40	10	4.5	184		
0.2	10.0 x 16.5 (18.5) x 17.5	3.3	10	14	12	13	15	204		
0.22		, , , ,		(500)	(450)	(600)	(500)	(250)	224	

Notes

www.vishay.com

For technical questions, contact: dc-film@vishay.com Document Number: 28124 Revision: 08-Aug-2018

⁽¹⁾ Net weight for short lead products only

[•] SPQ = Standard Packaging Quantity

AC and Pulse Double Metallized Polypropylene Film Capacitors MMKP Radial Potted Type

Vishay BCcomponents

 U_{Rdc} = 400 V; U_{Rac} = 200 ; $U_{p\text{-}p}$ = 560 V; C-tol. = \pm 5 %

			CATALOG NUMBER BFC2 383 XXYYY AND PACKAGING						
	DIMENSIONS		LOOSE	IN BOX	REEL	C-VALUE			
C (µF)	w x h x l (mm)	MASS (g) ⁽¹⁾	Leads 3.5 ± 0.3 mm	Leads 25.0 ± 2.0 mm	Original pitch	YYY			
	()		XX (SPQ)	XX (SPQ)	XX (SPQ)				
Pitch = 22.5	mm ± 0.4 mm; d _t = 0.80 mm	± 0.08 mm			Pitch = 22.5 mm				
0.24	7.0 x 116.5 x 26.0	3.0	10 (200)	14 (250)	12 (550)	244			
0.27 0.30 0.33	8.5 x 18.0 x 26.0	4.2	10 (200)	14 (250)	12 (450)	274 304 334			
0.36 0.39 0.43	10.0 x 19.5 x 26.0	5.3	10 (200)	14 (200)	12 (350)	364 394 434			
Pitch = 27.5	$mm \pm 0.4 mm; d_t = 0.80 mm$	± 0.08 mm			Pitch = 27.5 mm				
0.47 0.51 0.56 0.62	11.0 x 21.0 x 31.0	8.0	10 (100)	14 (125)	-	474 514 564 624			
0.68 0.75 0.82	13.0 x 23.0 x 31.0	9.7	10 (100)	14 (125)		684 754 824			
0.91 1. 1.1	15.0 x 25.0 x 31.0	12.6	10 (100)	14 (125)	-	914 105 115			
1.2 1.3 1.5	18.0 x 28.0 x 31.0	16.3	10 (100)	14 (100)		125 135 155			

Notes

SPECIFIC REFERENCE DATA (630 Vdc)

DESCRIPTION	VALUE		
Tangent of loss angle:	at 10 kHz	at 100 kHz	
$C \le 0.15 \mu\text{F}$	≤ 5 x 10 ⁻⁴	≤ 15 x 10 ⁻⁴	
$0.15 \ \mu F < C \le 0.22 \ \mu F$	≤ 8 x 10 ⁻⁴	≤ 25 x 10 ⁻⁴	
$0.22 \ \mu F < C \le 0.3 \ \mu F$	≤ 8 x 10 ⁻⁴	≤ 30 x 10 ⁻⁴	
$0.3 \ \mu F < C \le 0.47 \ \mu F$	≤ 10 x 10 ⁻⁴	≤ 40 x 10 ⁻⁴	
$0.47 \ \mu F < C \le 0.68 \ \mu F$	≤ 10 x 10 ⁻⁴	≤ 45 x 10 ⁻⁴	
$0.68 \ \mu F < C \le 1.0 \ \mu F$	≤ 10 x 10 ⁻⁴	≤ 50 x 10 ⁻⁴	
Rated voltage pulse slope (dU/dt) _R :			
$C \le 0.056 \mu\text{F}$	700 V/μs		
$0.056 \ \mu F < C \le 0.15 \ \mu F$	1400 V/μs		
$0.15 \ \mu F < C \le 0.3 \ \mu F$	470	V/μs	
$0.3 \ \mu F < C \le 0.75 \ \mu F$	300 V/μs		
$0.75 \ \mu F < C \le 1.0 \ \mu F$	210 V/µs		
R between leads, for C \leq 1 μ F at 100 V, 1 min	> 100 0	000 MΩ	
R between leads and case, 100 V, 1 min	> 30 0	00 MΩ	
Ionization (AC) voltage (typical value) at 50 pC peak discharge	> 250 V		
Withstanding (DC) voltage (cut off current 10 mA), rise time 100 V/s	1000 V, 1 min		
Withstanding (DC) voltage between leads and case	2840 V, 1 min		
Maximum application temperature	105	5°C	

⁽¹⁾ Net weight for short lead products only

[•] SPQ = Standard Packaging Quantity

Vishay BCcomponents AC and Pulse Double Metallized Polypropylene Film Capacitors MMKP Radial Potted Type

 U_{Rdc} = 630 V; U_{Rac} = 220 V; U_{p-p} = 630 V; C-tol. = ± 5 %

1140	т, онас – 220 т, о _{р-р} – ос	<u> </u>		CATALOG NUI	MBER BFC2 383 X	XYYY AND PA	CKAGING				
	DIMENSIONS		LOOSE	IN BOX		REEL		C-VALUE			
, C_	w x h (h') x l	MASS	Leads	Leads	Original pitch	Pitch = 7.5 m	m (bent back)				
(µF)	(mm)	(g) ⁽¹⁾	3.5 ± 0.3 mm	25.0 ± 2.0 mm	Original pitch	Ø 500 mm	Ø 356 mm	YYY			
	, ,		XX (SPQ)	XX (SPQ)	XX (SPQ)	XX (SPQ)	XX (SPQ)				
Pitch = 1	$5 \text{ mm} \pm 0.4 \text{ mm}; d_t = 0.80$	0 mm ± 0.	08 mm		Pitch = 15 mm	Pitch = 7.5 m	m (bent back)				
0.03			20	24	22	23	25	303			
0.033	5.0 x 11.0 (13.0) x 17.5	1.1	(1250)	(1000)	(2200)	(950)	(550)	333			
0.036			(1200)	(1000)	(====)	(000)	(000)	363			
0.039								393			
0.043			20	24	22	23	25	433			
0.047	6.0 x 12.0 (14.0) x 17.5	1.4	(1000)	(1000)	(900)	(800)	(450)	473			
0.051			(333,		(===)	(,	(/	513			
0.056								563			
0.062			20	24	22	23	25	623			
0.068	7.0 x 13.5 (15.5) x 17.5	1.8	(750)	(500)	(800)	(700)	(400)	683			
0.075			` '	` ′	` ′		` '	753			
0.082								823			
0.091	8.5 x 15.0 (17.0) x 17.5	8.5 x 15.0 (17.0) x 17.5	8.5 x 15.0 (17.0) x 17.5	8.5 x 15.0 (17.0) x 17.5	2.5	20	24	22	23	25	913
0.1			(750)	(500)	(650)	(550)	(300)	104			
0.11								114			
0.12			20	24	22	23	25	124			
0.13	10.0 x 16.5 (18.5) x 17.5	3.3	(500)	(450)	(600)	(500)	(250)	134			
0.15				` ′			` ′	154			
	22.5 mm \pm 0.4 mm; $d_t = 0$.	80 mm ±	0.08 mm	1	Pitch = 22.5 mn	n	ı	404			
0.16				04	00			164			
0.18	8.5 x 18.0 x 26.0	4.2	20	24 (250)	22 (450)	-	-	184			
0.2		(200)	(230)	(450)			204				
0.22								224			
0.24 0.27	10.0 x 19.5 x 26.0	5.3	20	24	22			174 304			
0.27	10.0 X 19.5 X 20.0	5.5	(200)	(200)	(350)	-	-	304			
	 ?7.5 mm ± 0.4 mm; d _t = 0.	90 mm +	0 00 mm		Pitch = 27.5 mn	•					
0.33		OU IIIIII ±	0.06 11111	1	711011 = 27.5 MM	·•		334			
0.36			20	24				364 364			
0.39	11.0 x 21.0 x 31.0	8.0	(750)	(125)				394			
0.39			(750)	(120)				434			
0.43								434			
0.47	13.0 x 23.0 x 31.0	9.7	20	24				514			
0.51	10.0 x 20.0 x 31.0	3.1	(500)	(125)		_		564			
0.62			20	24		_		624			
0.68	15.0 x 25.0 x 31.0	12.6	(100)	(125)				684			
0.00	13.0 x 23.0 x 31.0	12.0	(.55)	(0,				754			
0.73								824			
0.02	18.0 x 28.0 x 31.0	16.3	20	24				914			
1.0	10.0 x 20.0 x 01.0	10.0	(100)	(100)				105			
1.0	J			L				100			

Notes

(1) Net weight for short lead products only

• SPQ = Standard Packaging Quantity

AC and Pulse Double Metallized Polypropylene Film Capacitors MMKP Radial Potted Type

Vishay BCcomponents

SPECIFIC REFERENCE DATA (1000 Vdc)

DESCRIPTION	VA	LUE		
Tangent of loss angle:	at 10 kHz	at 100 kHz		
$C \le 0.062 \mu\text{F}$	≤ 5 x 10 ⁻⁴	≤ 15 x 10 ⁻⁴		
$0.062 \ \mu F < C \le 0.13 \ \mu F$	≤ 6 x 10 ⁻⁴	≤ 20 x 10 ⁻⁴		
$0.13 \mu F < C \le 0.22 \mu F$	≤ 8 x 10 ⁻⁴	≤ 25 x 10 ⁻⁴		
$0.22 \ \mu F < C \le 0.33 \ \mu F$	≤ 8 x 10 ⁻⁴	≤ 30 x 10 ⁻⁴		
$0.33 \ \mu F < C \le 0.47 \ \mu F$	≤ 8 x 10 ⁻⁴	≤ 35 x 10 ⁻⁴		
Rated voltage pulse slope (dU/dt) _R :				
$C \le 0.024 \mu F$	1700 V/μs			
$0.024 \ \mu F < C \le 0.062 \ \mu F$	3300 V/μs			
$0.062 \mu F < C \le 0.13 \mu F$	1200	V/μs		
$0.13 \ \mu F < C \le 0.33 \ \mu F$	700 V/μs			
$0.33 \ \mu F < C \le 0.47 \ \mu F$	470 V/μs			
R between leads, for C \leq 1 μ F at 500 V, 1 min	> 100 (000 MΩ		
R between leads and case, 500 V, 1 min	> 30 0	00 MΩ		
Ionization (AC) voltage (typical value) at 50 pC peak discharge	> 440 V			
Withstanding (DC) voltage (cut off current 10 mA), rise time 100 V/s	1600 V, 1 min			
Withstanding (DC) voltage between leads and case	2840 V, 1 min			
Maximum application temperature	105 °C			

U_{Rdc} = 1000 V; U_{Rac} = 350 V; $U_{p\text{-}p}$ = 1000 V; C-tol. = ± 5 %

			CATALOG NUMBER BFC2 383 XXYYY AND PACKAGING							
	DIMENSIONS	MASS	LOOSE IN BOX			C-VALUE				
С	DIMENSIONS w x h (h') x l				Original pitch	Pitch = 7.5 mm (bent back)				
(μ F)	(mm)	(g) ⁽¹⁾	3.5 ± 0.3 mm	25.0 ± 2.0 mm	Original pitch	Ø 500 mm	Ø 356 mm	YYY		
			XX (SPQ)	XX (SPQ)	XX (SPQ)	XX (SPQ)	XX (SPQ)			
Pitch = 1	5 mm \pm 0.4 mm; $d_t = 0.80$ m	m ± 0.08	Pitch = 15 mm	Pitch = 7.5 m	nm (bent back)					
0.0043								432		
0.0047								472		
0.0051								512		
0.0056								562		
0.0062				34	32		35 (550)	622		
0.0068			30					682		
0.0075						33		752		
0.0082	5.0 x 11.0 (13.0) x 17.5	1.1	(1250)	(1000)	(1100)	(950)		822		
0.0091				, ,	, ,	` ,	` ,	912		
0.01								103		
0.011								113		
0.012								123		
0.013 0.015								133		
0.015								153 163		
0.018								183		
0.018			30	34	32	33	35	203		
0.022	6.0 x 12.0 (14.0) x 17.5	1.4	(1000)	(1000)	(900)	(800)	(450)	223		
0.024			(1000)	(1000)	(000)	(000)	(100)	243		
0.027								273		
0.030	7.0 x 13.5 (15.5) x 17.5	1.8	30	34	32	33	35	303		
0.033	` '		(750)	(500)	(800)	(700)	(400)	333		
0.036								363		
0.039	8.5 x 15.0 (17.0) x 17.5	2.5	30	34	32	33	35	393		
0.043		2.5	(750)	(500)	(650)	(550)	(300)	433		
0.047								473		
0.051			30	34	32	33	35	513		
0.056	10.0 x 16.5 (18.5) x 17.5	3.3	(500)	(450)	(600)	(500)	(250)	563		
0.062			(300)	(430)	(000)	(500) (250)		623		

Notes

⁽¹⁾ Net weight for short lead products only

[•] SPQ = Standard Packaging Quantity

Vishay BCcomponents AC and Pulse Double Metallized Polypropylene Film Capacitors MMKP Radial Potted Type

			CATALOG NUMBER BFC2 383 XXYYY AND PACKAGING					
_	DIMENSIONS	MACC	LOOSE IN BOX		REEL	C-VALUE		
C (µF)	w x h (h') x l	MASS (g) ⁽¹⁾	Leads	Leads	Original pitch	YYY		
(μ.)	(mm)	(9)	XX (SPQ)	XX (SPQ)	XX (SPQ)			
Pitch = 22	2.5 mm ± 0.4 mm; d _t = 0.80	mm ± 0.0)8 mm		Pitch 22.5 mm			
0.068	7.0 x 16.5 x 26.5	3.0	30 (200)	34 (250)	32 (550)	683		
0.075 0.082 0.091	8.5 x 18.0 x 26.0	4.2	30 (200)	34 (250)	32 (450)	753 823 913		
0.1 0.11 0.12 0.13	10.0 x 19.5 x 26.0	5.3	30 (200)	34 (200)	32 (350)	104 114 124 134		
Pitch = 2	$7.5 \text{ mm} \pm 0.4 \text{ mm}; d_t = 0.80$	mm ± 0.0)8 mm	•	Pitch = 27.5 mm			
0.15 0.16 0.18	11.0 x 21.0 x 31.0	8.0	30 (100)	34 (125)		154 164 184		
0.2 0.22 0.24	13.0 x 23.0 x 31.0	9.7	30 (100)	34 (125)		204 224 244		
0.27 0.3 0.33	15.0 x 25.0 x 31.0	12.6	30 (100)	34 (125)	-	274 304 334		
0.36 0.39 0.43 0.47	18.0 x 28.0 x 31.0	16.3	30 (100)	34 (100)		364 394 434 474		

Notes

SPECIFIC REFERENCE DATA (1400 Vdc)

DESCRIPTION	VAL	.UE	
Tangent of loss angle:	at 10 kHz	at 100 kHz	
$C \le 0.016 \mu\text{F}$	≤ 5 x 10 ⁻⁴	≤ 10 x 10 ⁻⁴	
$0.016 \mu F < C \le 0.039 \mu F$	≤ 5 x 10 ⁻⁴	≤ 15 x 10 ⁻⁴	
$0.039 \mu F < C \le 0.13 \mu F$	≤ 5 x 10 ⁻⁴	≤ 20 x 10 ⁻⁴	
Rated voltage pulse slope (dU/dt) _R :			
C ≤ 0.0056 µF	8000	V/μs	
$0.0056 \mu F < C \le 0.016 \mu F$	15 000	V/µs	
$0.016 \mu F < C \le 0.039 \mu F$	4000	V/μs	
$0.039 \mu F < C \le 0.1 \mu F$	2100	V/μs	
$0.1 \mu F < C \le 0.13 \mu F$	1500	V/μs	
R between leads, for C \leq 1 μ F at 500 V, 1 min	> 100 00	00 MΩ	
R between leads and case, 500 V, 1 min	> 30 000 MΩ		
Ionization (AC) voltage (typical value) at 20 pC peak discharge	> 500 V		
Withstanding (DC) voltage (cut off current 10 mA), rise time 100 V/s 2250 V, 1 min			
Withstanding (DC) voltage between leads and case 2840 V, 1 min			
Maximum application temperature	105 °C		

www.vishay.com

For technical questions, contact: dc-film@vishay.com

⁽¹⁾ Net weight for short lead products only

[•] SPQ = Standard Packaging Quantity

AC and Pulse Double Metallized Polypropylene Film Capacitors MMKP Radial Potted Type

Vishay BCcomponents

 U_{Rdc} = 1400 V; U_{Rac} = 500 V; $U_{p\text{-}p}$ = 1400 V; C-tol. = ± 5 %

				CATALOG NU	MBER BFC2 383	XXYYY AND PA	ACKAGING	
	DIMENSIONS		LOOSE	IN BOX		REEL		C-VALUE
С	w x h (h') x l	MASS	Leads	Leads	Original pitch	Pitch = 7.5 m	nm (bent back)	
(μ F)	(mm)	(g) ⁽¹⁾	3.5 ± 0.3 mm	25.0 ± 2.0 mm	Original pitch	Ø 500 mm	Ø 356 mm	YYY
	()		XX (SPQ)	XX (SPQ)	XX (SPQ)	XX (SPQ)	XX (SPQ)	
Pitch = 15	$5 \text{ mm} \pm 0.4 \text{ mm}; d_t = 0.80$	mm ± 0.0	8 mm		Pitch = 15 mm	Pitch = 7.5 m	ım (bent back)	
0.0022								222
0.0024								242
0.0027			40	44	42	43	45	272
0.003	5.0 x 11.0 (13.0) x 17.5	1.1	(1250)	(1000)	(1100)	(950)	(550)	302
0.0033			(1230)	(1000)	(1100)	(550)	(330)	332
0.0036								362
0.0039								392
0.0043								432
0.0047	6.0 x 12.0 (14.0) x 17.5	1.4	40	44	42	43	45	472
0.0051	0.0 x 12.0 (14.0) x 17.5	1.4	(1000)	(1000)	(900)	(800)	(450)	512
0.0056								562
0.0062								622
0.0068	7.0 x 13.5 (15.5) x 17.5	1.8	40	44	42	43	45	682
0.0075	7.0 x 13.5 (15.5) x 17.5	1.0	(750)	(500)	(800)	(700)	(400)	752
0.0082								822
0.0091								912
0.01	8.5 x 15.0 (17.0) x 17.5	2.5	40	44	42	43	45	103
0.011	0.5 x 15.0 (17.0) x 17.5	2.5	(750)	(500)	(650)	(550)	(300)	113
0.012								123
0.013	10.0 x 16.5 (18.5) x		40	44	42	43	45	133
0.015	17.5	3.3	(500)	(450)	(600)	(500)	(250)	153
0.016	17.5		(500)	(430)	(000)	(500)	(230)	163
Pitch = 22	2.5 ± 0.4 mm; d _t = 0.80 mi	m ± 0.08 n	nm		Pitch = 22.5 mm	1		
0.018	7.0 x 16.5 x 26.0	3	40	44	42	_	_	183
0.02	7.0 X 10.0 X 20.0	Ů	(200)	(250)	(550)			203
0.022			40	44	42			223
0.024	8.5 x 18.0 x 26.0	4.2	(200)	(250)	(450)	-	-	243
0.027			(/	(/	(/			273
0.03								303
0.033	10.0 x 19.5 x 26.0	5.3	40	44	42	_	_	333
0.036			(200)	(200)	(350)			363
0.039								393
	7.5 ± 0.4 mm; d _t = 0.80 mi	m ± 0.08 n	nm	T	Pitch = 27.5 mm	1		
0.043								433
0.047	11.0 x 21.0 x 31.0	8	40	44				473
0.051								513
0.056								563
0.062			40	44				623
0.068	13.0 x 23.0 x 31.0	9.7	(100)	(125)		-		683
0.075			, ,	` ′				753
0.082			40	44				823
0.091	15.0 x 25.0 x 31.0	12.6	(100)	(125)				913
0.1			` '	` ′				104
0.11	40.0 05.5 51.5	46.5	40	44				114
0.12	18.0 x 28.0 x 31.0	16.3	(100)	(100)				124
0.13			. ,	` ′				134

Notes

⁽¹⁾ Net weight for short lead products only

[•] SPQ = Standard Packaging Quantity

Vishay BCcomponents AC and Pulse Double Metallized Polypropylene Film Capacitors MMKP Radial Potted Type

SPECIFIC REFERENCE DATA (1600 Vdc)

DESCRIPTION	VA	LUE	
Tangent of loss angle:	at 10 kHz	at 100 kHz	
C ≤ 0.015 μF	≤ 5 x 10 ⁻⁴	≤ 15 x 10 ⁻⁴	
$0.015 \mu F < C \le 0.15 \mu F$	≤ 5 x 10 ⁻⁴	≤ 20 x 10 ⁻⁴	
Rated voltage pulse slope (dU/dt) _R :			
C ≤ 0.0056 μF	8000	V/μs	
$0.0056 \mu F < C \le 0.0075 \mu F$	15 00	0 V/μs	
$0.0075 \mu F < C \le 0.039 \mu F$	3100	V/μs	
$0.039 \mu F < C \le 0.1 \mu F$	1800	V/μs	
$0.1 \mu F < C \le 0.15 \mu F$	1200	V/μs	
R between leads, for C ≤ 1 μF at 500 V, 1 min	> 100 0	000 MΩ	
R between leads and case, 500 V, 1 min	> 30 000 MΩ		
Ionization (AC) voltage (typical value) at 20 pC peak discharge	> 660 V		
Withstanding (DC) voltage (cut off current 10 mA), rise time 100 V/s	2560 V, 1 min		
Withstanding (DC) voltage between leads and case	2840 V, 1 min		
Maximum aplication temperature	105	5 °C	

 U_{Rdc} = 1600 V; U_{Rac} = 550 V; U_{p-p} = 1600 V; C-tol. = ± 5 %

			CATALOG NUMBER BFC2 383 XXYYY AND PACKAGING					
	DIMENSIONS		LOOSE	IN BOX		REEL		C-VALUE
С	w x h (h') x l	MASS	Leads	Leads	Out of our of outside	Pitch = 7.5 mm (bent back)		
(μ F)	(mm)	(g) ⁽¹⁾	3.5 ± 0.3	25.0 ± 2.0	Original pitch	Ø 500 mm	Ø 356 mm	vvv
	(,	XX XX	XX (SPQ)	XX (SPQ)	XX (SPQ)	XX (SPQ)	YYY	
Pitch = 1	$5 \text{ mm} \pm 0.4 \text{ mm}; d_t = 0.80 \text{ r}$	nm ± 0.08	mm		Pitch = 15 mm	Pitch = 7.5 m	ım (bent back)	
0.0027								272
0.003			50	54	52	53	55	302
0.0033	5.0 x 11.0 (13.0) x 17.5	1.1	(1250)	(1000)	(1100)	(950)	(550)	332
0.0036			(1230)	(1000)	(1100)	(930)	(330)	362
0.0039								392
0.0043								432
0.0047	6.0 x 12.0 (14.0) x 17.5	1.4	50		52	53	55	472
0.0051	1	1.4	(1000)	(1000)	(900)	(800)	(450)	512
0.0056								562
0.0062			50	54	52	53 (700)	55 (400)	622
0.0068	7.0 x 13.5 (15.5) x 17.5	1.8	(750)	(500)	(800)			682
0.0075			(700)	(000)	(000)	(700)	(400)	752
0.0082								822
0.0091	8.5 x 15.0 (17.0) x 17.5	2.5	50	54	52	53	55	912
0.01	0.0 x 10.0 (17.0) x 17.0	2.5	(750)	(500)	(650)	(550)	(300)	103
0.011								113
0.012			50	54	52	53	55	123
0.013	10.0 x 16.5 (18.5) x 17.5	3.3	(500)	(450)	(600)	(500)	(250)	133
0.015				(100)		. ,	(200)	153
	2.5 ± 0.4 mm; $d_t = 0.80$ mm	± 0.08 mr	n	•	Pitch = 22.5 mm	n		
0.016			50	54	52			163
0.018	7.0 x 16.5 x 26.0	3.0	(200)	(250)	(550)	-	-	183
0.02			(/	(,	(/			203
0.022								223
0.024	8.5 x 18.0 x 26.0	4.2	50	54	52	-	_	243
0.027	3.5		(200)	(250)	(450)			273
0.03								303
0.033	10.0 x 19.5 x 26.0		50	54	52			333
0.036		5.3	(200)	(200)	(350)	-	-	363
0.039			(,	(===)	(/			393

Notes

www.vishay.com

For technical questions, contact: dc-film@vishay.com Document Number: 28124 Revision: 08-Aug-2018

⁽¹⁾ Net weight for short lead products only

[•] SPQ = Standard Packaging Quantity

AC and Pulse Double Metallized Polypropylene Film Capacitors MMKP Radial Potted Type

Vishay BCcomponents

 U_{Rdc} = 1600 V; U_{Rac} = 550 V; U_{p-p} = 1600 V; C-tol. = ± 5 %

	, - пас			CATALOG N	UMBER BFC2 38	3 XXYYY AND	PACKAGING										
DIMENSIONS	DIMENSIONS		LOOSE IN BOX		REEL			C-VALUE									
C	w x h (h') x l	MASS	Leads		Original pitch	Pitch = 7.5 mm (bent back)											
(μ F)	(mm)	(g) ⁽¹⁾	3.5 ± 0.3	25.0 ± 2.0	Original pitch	Ø 500 mm	Ø 356 mm	YYY									
	, ,		XX (SPQ)		XX (SPQ)	XX (SPQ)	XX (SPQ)										
Pitch = 27	.5 ± 0.4 mm; d _t = 0.80 mm	± 0.08 mm	1		Pitch = 27.5 mr	n											
0.043								433									
0.047	44.0 04.0 04.0		50	54				473									
0.051	11.0 x 21.0 x 31.0	8	(100)	(100)	(100)	(100)	(100)	(100)	(100)	(100)	(100)	(100)	(125)				513
0.056								563									
0.062								623									
0.068	13.0 x 23.0 x 31.0	9.7	50 (100)	54 (125)				683									
0.075			(100)	(123)				753									
0.082						-		823									
0.091	15.0 x 25.0 x 31.0	12.6	50 (100)	54 (125)				913									
0.1			(100)	(123)				104									
0.11								114									
0.12	10.0 00.0 01.0	10.0	50	54				124									
0.13	18.0 x 28.0 x 31.0	16.3	(100)	(100)				134									
0.15								154									

Notes

SPECIFIC REFERENCE DATA (2000 Vdc)

DESCRIPTION	VALUE			
Tangent of loss angle:	at 10 kHz	at 100 kHz		
C ≤ 0.01 µF	≤ 5 x 10 ⁻⁴	≤ 15 x 10 ⁻⁴		
$0.01 \ \mu F < C \le 0.1 \ \mu F$	≤ 10 x 10 ⁻⁴	≤ 18 x 10 ⁻⁴		
Rated voltage pulse slope (dU/dt) _R :				
$C \le 0.0036 \ \mu F$	11 00	0 V/μs		
$0.0036 \ \mu F < C \le 0.01 \ \mu F$	20 00	0 V/μs		
$0.01~\mu F < C \le 0.024~\mu F$	4400	V/μs		
$0.024 \ \mu F < C \le 0.068 \ \mu F$	2500	V/μs		
$0.068 \ \mu F < C \le 0.1 \ \mu F$	1800	V/μs		
R between leads, for C \leq 1 μ F at 500 V, 1 min	> 100 0	000 MΩ		
R between leads and case, 500 V, 1 min	> 30 000 MΩ			
Ionization (AC) voltage (typical value) at 20 pC peak discharge	> 750 V			
Withstanding (DC) voltage (cut off current 10 mA), rise time 100 V/s	age (cut off current 10 mA), rise time 100 V/s 3200 V, 1 min			
Withstanding (DC) voltage between leads and case	nding (DC) voltage between leads and case 2840 V, 1 min			
Maximum application temperature	105 °C			

⁽¹⁾ Net weight for short lead products only

[•] SPQ = Standard Packaging Quantity

Vishay BCcomponents AC and Pulse Double Metallized Polypropylene Film Capacitors MMKP Radial Potted Type

 U_{Rdc} = 2000 V; U_{Rac} = 700 V; $U_{p\text{-}p}$ = 2000 V; C-tol. = ± 5 %

				CATALOG N	UMBER BFC2 383	XXYYY AND F	PACKAGING	
	DIMENSIONS		LOOSE	IN BOX		REEL		C-VALUE
С		MASS	Leads	Leads		Pitch = 7.5 m	nm (bent back)	
(μ F)	w x h (h') x l (mm)	(g) ⁽¹⁾	3.5 ± 0.3	25.0 ± 2.0	Original pitch	Ø 500 mm	Ø 356 mm	vvv
	(11111)		XX	XX	XX	XX	XX	YYY
			(SPQ)	(SPQ)	(SPQ)	(SPQ)	(SPQ)	
Pitch = 15	$6 \text{ mm} \pm 0.4 \text{ mm}; d_t = 0.80 \text{ r}$	nm ± 0.08	3 mm		Pitch = 15 mm	Pitch = 7.5 m	m (bent back)	
0.001								102
0.0011								112
0.0012								122
0.0013								132
0.0015			60	64	62	63	65	152
0.0016	5.0 x 11.0 (13.0) x 17.5	1.1	(1250)	(1000)	(1100)	(950)	(550)	162
0.0018			(1200)	(1000)	(1.00)	(000)	(666)	182
0.002								202
0.0022								222
0.0024								242
0.0027								272
0.003	6.0 x 12.0 (14.0) x 17.5	1.4	60	64	62	63	65	302
0.0033	,		(1000)	(1000)	(900)	(800)	(450)	332
0.0036								362
0.0039			60	64	60	60	GE.	392
0.0043	7.0 x 13.5 (15.5) x 17.5	1.8	60 (750)	64 (500)	62 (800)	63 (700)	65 (400)	432
0.0047			(700)	(555)	(000)	(700)	(400)	472
0.0051								512
0.0056	0.5 45.0 (47.0) 47.5	0.5	60	64	62	63	65	562
0.0062	8.5 x 15.0 (17.0) x 17.5	2.5	(750)	(500)	(650)	(550)	(300)	622
0.0068								682
0.0075								752
0.0082			60	64	62	63	65	822
0.0091	10.0 x 16.5 (18.5) x 17.5	3.3	(500)	(450)	(600)	(500)	(250)	912
0.01			, ,			, ,	, ,	103
	! 2.5 mm ± 0.4 mm; d _t = 0.80) mm + 0 (08 mm	<u> </u>	Pitch = 22.5 mn	<u> </u>		
0.011					1 1011 - 22.0 1111	•		113
0.011	7.0 x 16.5 x 26.0	3.0	60	64	62	_	[123
0.012	7.0 1 10.3 1 20.0	3.0	(200)	(250)	(550)	_	-	133
								153
0.015	0.5 v 10.0 · · 00.0	4.0	60	64	62			
0.016	8.5 x 18.0 x 26.0	4.2	(200)	(250)	(450)	-	-	163
0.018								183
0.02	100 10		60	64	62			203
0.022	10.0 x 19.5 x 26.0	5.3	(200)	(200)	(350)	-	-	223
0.024								243
	$\frac{1}{1.5}$ mm ± 0.4 mm; $d_t = 0.80$) mm ± 0.0	08 mm	•	Pitch = 27.5 mn	1		
0.027								273
0.03			60	64		_		303
0.033	11.0 x 21.0 x 31.0	8.0	(100)	(125)				333
0.036			(100)	(123)				363
0.039								393

Notes

(1) Net weight for short lead products only

• SPQ = Standard Packaging Quantity

AC and Pulse Double Metallized Polypropylene Film Capacitors MMKP Radial Potted Type

Vishay BCcomponents

				CATALOG N	UMBER BFC2 38	3 XXYYY AND F	PACKAGING	
	DIMENSIONS		LOOSE	IN BOX		REEL		C-VALUE
C	w x h (h') x l	MASS	Leads	Leads	Original pitch	Pitch = 7.5 m	m (bent back)	
(µF)	(mm)	(g) ⁽¹⁾	3.5 ± 0.3	25.0 ± 2.0	Original pitch	Ø 500 mm	Ø 356 mm	YYY
	, ,		XX (SPQ)	XX (SPQ)	XX (SPQ)	XX (SPQ)	XX (SPQ)	
Pitch = 27	$.5 \text{ mm} \pm 0.4 \text{ mm}; d_t = 0.80$	mm ± 0.0)8 mm		Pitch = 27.5 mr	n		
0.043								433
0.047	13.0 x 23.0 x 31.0	9.7	60 (100)	64 (125)				473
0.051			(100)	(123)				513
0.056								563
0.062	15.0 x 25.0 x 31.0	12.6	60 (100)	64 (125)				623
0.068			(100)	(123)		-		683
0.075					1			753
0.082	10.0 × 00.0 × 01.0	16.0	60	64				823
0.091	18.0 x 28.0 x 31.0	16.3	(100)	(100)				913
0.10								104

Notes

- (1) Net weight for short lead products only
- SPQ = Standard Packaging Quantity

SPECIFIC REFERENCE DATA (2500 Vdc)

DESCRIPTION	VA	VALUE			
Tangent of loss angle:	at 10 kHz	at 100 kHz			
C ≤ 0.015 μF	≤ 5 x 10 ⁻⁴	≤ 10 x 10 ⁻⁴			
0.015 μF < C ≤ 0.056 μF	≤ 5 x 10 ⁻⁴	≤ 15x 10 ⁻⁴			
Rated voltage pulse slope (dU/dt) _R :					
C ≤ 0.015 µF	13 000	0 V/μs			
0.015 μF < C ≤ 0.043 μF	6000	V/μs			
$0.043~\mu F < C \le 0.056~\mu F$	4200	V/μs			
R between leads, for C \leq 1 μ F at 500 V, 1 min	> 100 0	000 MΩ			
R between leads and case, 500 V, 1 min	> 30 00	00 MΩ			
Ionization (AC) voltage (typical value) at 20 pC peak discharge	> 10	00 V			
Withstanding (DC) voltage (cut off current 10 mA), rise time 100 V/s	3500 V, 1 min				
Withstanding (DC) voltage between leads and case	2840 V, 1 min				
Maximum application temperature	105	5 °C			

Vishay BCcomponents AC and Pulse Double Metallized Polypropylene Film Capacitors MMKP Radial Potted Type

 U_{Rdc} = 2500 V; U_{Rac} = 900 V; $U_{p=p}$ = 2500 V; C-tol. = ± 5 %

				CATALOG NUMBER BFC2 383 XXYYY AND PACK				
•	DIMENSIONS			E IN BOX	REEL	C-VALUE		
C (µF)	w x h x l (mm)	MASS (g) ⁽¹⁾	Leads 3.5 ± 0.3 mm	Leads 25.0 ± 2.0 mm	H = 18.5 mm	YYY		
			XX (SPQ)	XX (SPQ)	XX (SPQ)			
	mm ± 0.4 mm; d _t = 0.80 mm	± 0.08 mm		 		1		
0.001						102		
0.0011						112		
0.0012						122		
0.0013						132		
0.0015						152		
0.0016						162		
0.0018						182		
0.002						202		
0.0022	6.0 x 15.5 x 26.0	2.4	70	74	72	222		
0.0024			(200)	(250)	(600)	242		
0.0027						272		
0.003						302		
0.0033						332		
0.0036						362		
0.0039						392		
0.0043						432		
0.0047						472		
0.0051						512		
0.0056						562		
0.0062	7.0 x 16.5 x 26.0	3.0	70	74	72	622		
0.0068			(200)	(250)	(550)	682		
0.0075						752		
0.0082						822		
0.0091	8.5 x 18.0 x 26.0	4.2	70	74	72	912		
0.01			(200)	(250)	(450)	103		
0.011						113		
0.012	10.0 10.5 00.0		70	74	72	123		
0.013	10.0 x 19.5 x 26.0	5.3	(200)	(200)	(350)	133		
0.015						153		
	mm ± 0.4 mm; d _t = 0.80 mm		70	74		100		
0.016	9.0 x 19.0 x 31.0	5.9	70	74		163		
0.018			70			183		
0.02	11.0 x 21.0 x 31.0	8.0	70 (100)	74 (125)		203		
0.022			(100)	(123)		223		
0.024			+			243		
0.027	13.0 x 23.0 x 31.0	9.7	70	74		273		
0.03	13.0 X 23.0 X 31.0	9.7	(100)	(125)	-	303		
0.033			+			333		
0.036	15 0 v 25 0 v 21 0	10.6	70	74		363		
0.039	15.0 x 25.0 x 31.0	12.6	(100)	(125)		393		
0.043						433		
0.047	19 0 7 29 0 7 21 0	16.0	70	74		473		
0.051	18.0 x 28.0 x 31.0	16.3	(100)	(100)		513		
0.056						563		

Notes
(1) Net weight for short lead products only

• SPQ = Standard Packaging Quantity

www.vishay.com

For technical questions, contact: dc-film@vishay.com

AC and Pulse Double Metallized Polypropylene Film Capacitors MMKP Radial Potted Type

Vishay BCcomponents

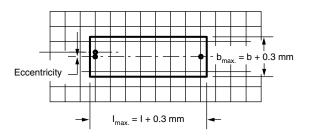
MOUNTING

Normal Use

The capacitors are designed for mounting on printed-circuit boards. The capacitors packed in bandoliers are designed for mounting on printed-circuit boards by means of automatic insertion machines.

For detailed tape specifications refer to "Packaging Information" www.vishay.com/docs?28139

Specific Method of Mounting to Withstand Vibration and Shock


In order to withstand vibration and shock tests, it must be ensured that the stand-off pips are in good contact with the printed-circuit board:

- For original pitch = 15 mm the capacitors shall be mechanically fixed by the leads
- For larger pitches the capacitors shall be mounted in the same way and the body clamped

Space Requirements on Printed-Circuit Board

The maximum length and width of film capacitors is shown in the drawing:

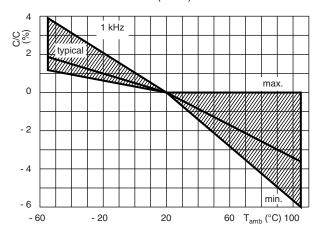
- . Eccentricity as in drawing. The maximum eccentricity is smaller than or equal to the lead diameter of the product concerned
- Product height with seating plane as given by "IEC 60717" as reference: $h_{max.} \le h + 0.3 \text{ mm}$

Storage Temperature

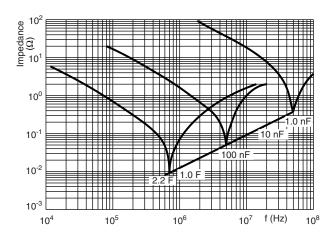
Storage temperature: T_{stq} = - 25 °C to + 40 °C with RH maximum 80 % without condensation

Ratings and Characteristics Reference Conditions

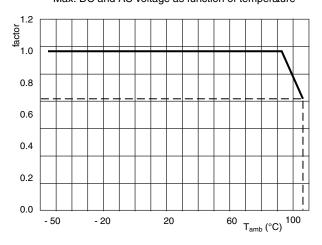
Unless otherwise specified, all electrical values apply to an ambient free temperature of 23 °C ± 1 °C, an atmospheric pressure of 86 kPa to 106 kPa and a relative humidity of 50 $\% \pm 2 \%$.

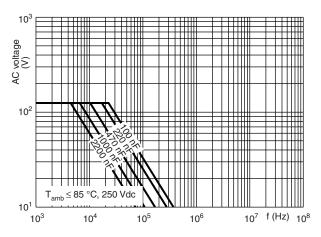

For reference testing, a conditioning period shall be applied over 96 h ± 4 h by heating the products in a circulating air oven at the rated temperature and a relative humidity not exceeding 20 %.

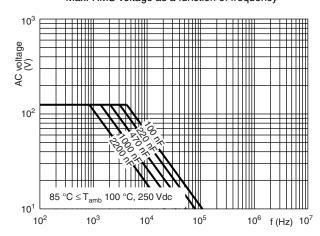
Vishay BCcomponents AC and Pulse Double Metallized Polypropylene Film Capacitors MMKP Radial Potted Type



CHARACTERISTICS


Capacitance as a function of ambient temperature (typical curve) (1 kHz)

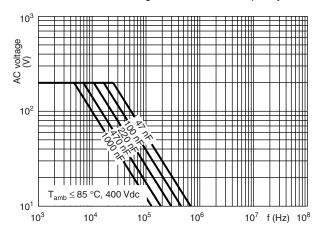

Impedance as a function of frequency (typical curve)

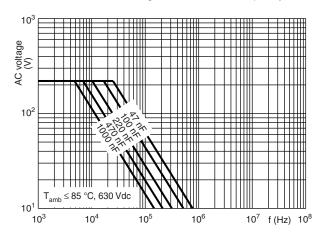

Max. DC and AC voltage as function of temperature

Max. RMS voltage as a function of frequency

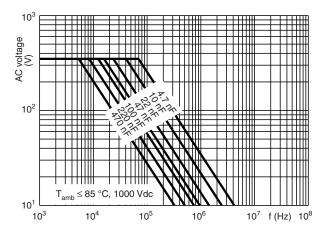
Max. RMS voltage as a function of frequency

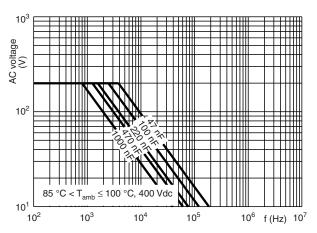
www.vishay.com

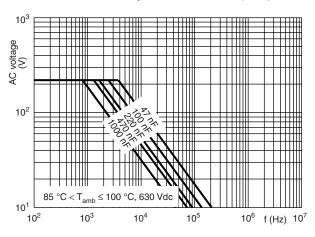

For technical questions, contact: dc-film@vishay.com

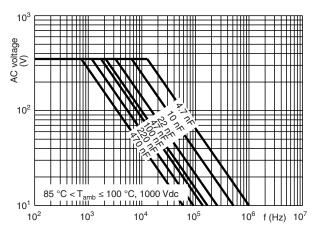

AC and Pulse Double Metallized Polypropylene Film Capacitors MMKP Radial Potted Type

Vishay BCcomponents

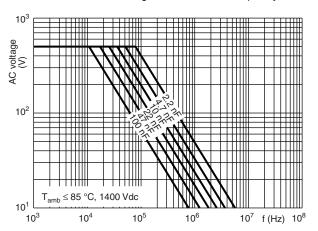

Max. RMS voltage as a function of frequency

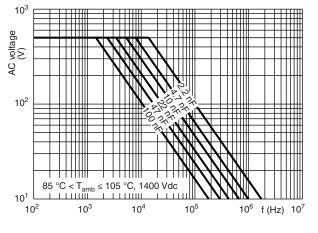

Max. RMS voltage as a function of frequency


Max. RMS voltage as a function of frequency

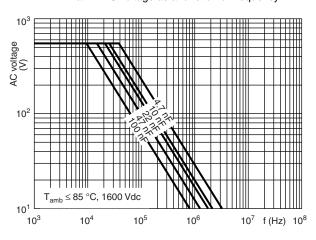

Max. RMS voltage as a function of frequency

Max. RMS voltage as a function of frequency

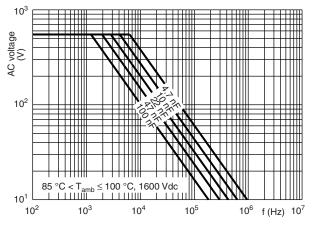

Max. RMS voltage as a function of frequency


Vishay BCcomponents AC and Pulse Double Metallized Polypropylene Film Capacitors MMKP Radial Potted Type

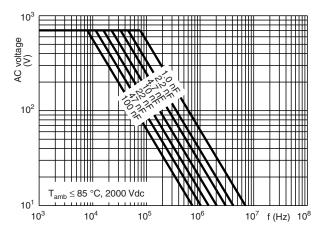
Max. RMS voltage as a function of frequency

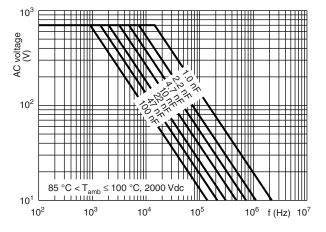


Max. RMS voltage as a function of frequency



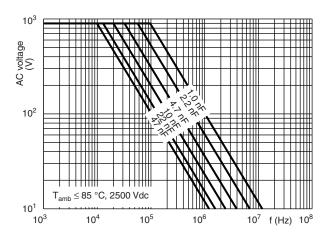
Max. RMS voltage as a function of frequency

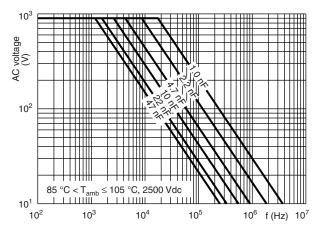

Max. RMS voltage as a function of frequency



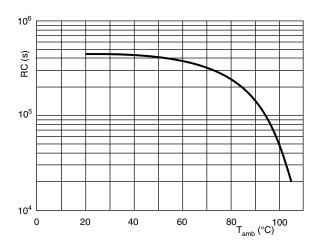
Max. RMS voltage as a function of frequency

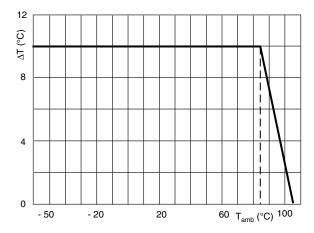
Max. RMS voltage as a function of frequency



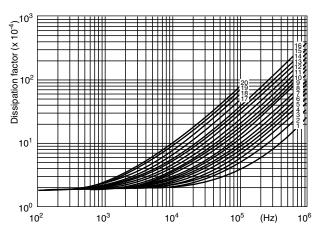

AC and Pulse Double Metallized Polypropylene Film Capacitors MMKP Radial Potted Type

Vishay BCcomponents


Max. RMS voltage as a function of frequency


Max. RMS voltage as a function of frequency

Insulation resistance as a function of ambient temperature


Max. allowed component temperature rise (ΔT) as a function of the ambient temperature (T_{amb})

Vishay BCcomponents AC and Pulse Double Metallized Polypropylene Film Capacitors MMKP Radial Potted Type

Tangent of loss angle as a function of frequency (typical curve)

250 V	400 V	630 V	1000 V
C ≤ 0.091 μF, curve 8	C ≤ 0.047 μF, curve 5	C ≤ 0.033 μF, curve 4	C ≤ 0.01 μF, curve 2
C ≤ 0.015 μF, curve 9	C ≤ 0.068 μF, curve 6	C ≤ 0.068 μF, curve 5	C ≤ 0.027 μF, curve 3
C ≤ 0.022 μF, curve 10	C ≤ 0.1 μF, curve 7	$C \le 0.1 \mu F$, curve 6	C ≤ 0.047 μF, curve 4
C ≤ 0.027 μF, curve 11	C ≤ 0.2 μF, curve8	C ≤ 0.15 μF, curve 7	C ≤ 0.062 μF, curve 5
C ≤ 0.033 μF, curve 12	C ≤ 0.24 μF, curve 12	C ≤ 0.22 μF, curve 11	C ≤ 0.075 μF, curve 6
C ≤ 0.056 μF, curve 15	C ≤ 0.36 μF, curve 13	C ≤ 0.27 μF, curve 12	C ≤ 0.1 μF, curve 7
C ≤ 0.082 μF, curve 16	C ≤ 0.43 μF, curve 14	C ≤ 0.47 μF, curve 15	C ≤ 0.15 μF, curve 8
C ≤ 1.2 μF, curve 18	C ≤ 0.56 μF, curve 16	C ≤ 0.68 μF, curve 16	C ≤ 0.22 μF, curve 9
C ≤ 1.61 μF, curve 19	C ≤ 1.1 μF, curve 17		C ≤ 0.3 μF, curve 10
C ≤ 2.21 μF, curve 20			C ≤ 0.39 μF, curve 11
			$C \le 0.47 \mu F$, curve 12
140 V	1600 V	2000 V	2500 V
C ≤ 0.0047 μF, curve 1	C ≤ 0.0047 μF, curve 3	C ≤ 0.0047 μF, curve 2	C ≤ 0.0047 μF, curve 1
$C \le 0.016 \mu F$, curve 2	C ≤ 0.0091 μF, curve 4	C ≤ 0.033 μF, curve 3	$C \le 0.015 \mu F$, curve 2
C ≤ 0.033 μF, curve 3	C ≤ 0.068 μF, curve 5	C ≤ 0.1 μF, curve 4	$C \le 0.056 \mu F$, curve 3
C ≤ 0.051 μF, curve 4	$C \le 0.01 \mu F$, curve 6		
C ≤ 0.068 μF, curve 5	$C \le 0.15 \mu F$, curve 7		
C ≤ 0.082 μF, curve 6			
C ≤ 0.1 μF, curve 7			

HEAT CONDUCTIVITY (G) AS A FUNCTION OF (ORIGINAL) PITCH AND CAPACITOR BODY THICKNESS IN mW/°C

W _{max} .	HEAT CONDUC	HEAT CONDUCTIVITY (mW/°C)				
(mm)	PITCH 15 mm	PITCH 22.5 mm	PITCH 27.5 mm			
4.0	-	-	-			
5.0	10	-	-			
6.0	11	19	-			
7.0	12	21	-			
8.5	16	25	-			
10.0	18	28	-			
11.0	-	-	36			
13.0	-	-	42			
15.0	-	-	48			
18.0	-	-	57			

www.vishay.com

For technical questions, contact: dc-film@vishay.com

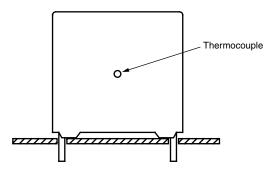
Document Number: 28124

AC and Pulse Double Metallized Polypropylene Film Capacitors MMKP Radial Potted Type

Vishay BCcomponents

POWER DISSIPATION AND MAXIMUM COMPONENT TEMPERATURE RISE

The power dissipation must be limited in order not to exceed the maximum allowed component temperature rise as a function of the free air ambient temperature.


The power dissipation can be calculated according type detail specification "HQN-384-01/101: Technical Information Film Capacitors".

The component temperature rise (ΔT) can be measured (see section "Measuring the component temperature" for more details) or calculated by $\Delta T = P/G$:

- ΔT = Component temperature rise (°C)
- P = Power dissipation of the component (mW)
- G = Heat conductivity of the component (mW/°C)

MEASURING THE COMPONENT TEMPERATURE

A thermocouple must be attached to the capacitor body as in:

The temperature is measured in unloaded (T_{amb}) and maximum loaded condition (T_C) .

The temperature rise is given by $\Delta T = T_C - T_{amb}$.

To avoid radiation or convection, the capacitor should be tested in a wind-free box.

APPLICATION NOTE AND LIMITING CONDITIONS

These capacitors are not suitable for mains applications as across-the-line capacitors without additional protection, as described hereunder. These mains applications are strictly regulated in safety standards and therefore electromagnetic interference suppression capacitors conforming the standards must be used.

To select the capacitor for a certain application, the following conditions must be checked:

- 1. The peak voltage (U_P) shall not be greater than the rated DC voltage (U_{Rdc})
- 2. The peak-to-peak voltage (U_{P-P}) shall not be greater than 2√2 x U_{Rac} to avoid the ionisation inception level
- 3. The voltage pulse slope (dU/dt) shall not exceed the rated voltage pulse slope in an RC-circuit at rated voltage and without ringing. If the pulse voltage is lower than the rated DC voltage, the rated voltage pulse slope may be multiplied by U_{Rdc} and divided by the applied voltage.

For all other pulses following equation must be fulfilled:

$$2 \times \int_{0}^{T} \left(\frac{dU}{dt}\right)^{2} \times dt < U_{Rdc} \times \left(\frac{dU}{dt}\right)_{rated}$$

T is the pulse duration.

- 4. The maximum component surface temperature rise must be lower than the limits (see graph max. allowed component temperature rise).
- 5. Since in circuits used at voltages over 280 V peak-to-peak the risk for an intrinsically active flammability after a capacitor breakdown (short circuit) increases, it is recommended that the power to the component is limited to 100 times the values mentioned in the table: "Heat Conductivity"

Vishay BCcomponents AC and Pulse Double Metallized Polypropylene Film Capacitors MMKP Radial Potted Type

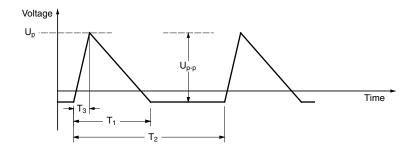
6. When using these capacitors as across-the-line capacitor in the input filter for mains applications or as series connected with an impedance to the mains the applicant must guarantee that the following conditions are fulfilled in any case (spikes and surge voltages from the mains included).

Voltage Conditions for 6 Above

ALLOWED VOLTAGES	T _{amb} ≤ 85 °C	85 °C < T _{amb} ≤ 105 °C
Maximum continuous RMS voltage	U _{Rac}	U _{Rac}
Maximum temperature RMS-overvoltage (< 24 h)	1.25 x U _{Rac}	1.25 x U _{Rac}
Maximum peak voltage (V _{O-P}) (< 2 s)	1.6 x U _{Rdc}	1.1 x U _{Rdc}

EXAMPLE

C = 4 nF - 1600 V used for the voltage signal shown in next drawing.


 $U_{P-P} = 1000 \text{ V}$; $U_P = 900 \text{ V}$; $T_1 = 12 \text{ }\mu\text{s}$; $T_2 = 64 \text{ }\mu\text{s}$; $T_3 = 4 \text{ }\mu\text{s}$

The ambient temperature is 80 °C. In case of failure, the oscillation is blocked.

Checking conditions:

- 1. The peak voltage $U_P = 900 \text{ V}$ is lower than 1600 Vdc
- 2. The peak-to-peak voltage 1000 V is lower than $2\sqrt{2} \times 550 \text{ Vac} = 1600 \text{ U}_{P-P}$
- 3. The voltage pulse slope (dU/dt) = 1000 V/4 μ s = 250 V/ μ s This is lower than 8000 V/ μ s (see specific reference data for each version)
- 4. The dissipated power is 35 mW as calculated with fourier terms and typical tgd. The temperature rise for W_{max.} = 6.0 mm and pitch = 15 mm will be 35 mW/11 mW/°C = 3.2 °C This is lower than 10 °C temperature rise at 80 °C, according graph.
- 5. Oscillation is blocked
- 6. Not applicable

Voltage Signal

www.vishay.com 208 For technical questions, contact: dc-film@vishay.com

AC and Pulse Double Metallized Polypropylene Film Capacitors MMKP Radial Potted Type

Vishay BCcomponents

INSPECTION REQUIREMENTS

General Notes:

Sub-clause numbers of tests and performance requirements refer to the "Sectional Specification, Publication IEC 60384-17 and Specific Reference Data".

Group C Inspection Requirements

SUB-CLAUSE NUMBER AND TEST SUB-GROUP C1A PART OF SAMPLE OF SUB-GROUP C1		CONDITIONS	PERFORMANCE REQUIREMENTS
4.1	Dimensions (detail)		As specified in chapters "General Data" of this specification
4.3.1	Initial measurements	Capacitance Tangent of loss angle: For C \leq 1 μ F at 100 kHz or for C $>$ 1 μ F at 10 kHz	
4.3	Robustness of terminations	Tensile: Load 10 N; 10 s Bending: Load 5 N; 4 x 90°	No visible damage
4.4	Resistance to soldering heat	Method: 1A Solder bath: 280 °C ± 5 °C Duration: 10 s	
4.14	Component solvent resistance	Isopropylalcohol at room temperature Method: 2 Immersion time: 5 min ± 0.5 min Recovery time: Min. 1 h, max. 2 h	
4.4.2	Final measurements	Visual examination	No visible damage Legible marking
		Capacitance	$ \Delta C/C \le 1$ % of the value measured initially
		Tangent of loss angle	Increase of $\tan \delta$ ≤ 0.0005 for: $C \leq 100$ nF or ≤ 0.001 for: 100 nF < 0.0015 for: 0.0015
	GROUP C1B OTHER PART OF LE OF SUB-GROUP C1		
4.6.1	Initial measurements	Capacitance Tangent of loss angle: For C ≤ 1 μF at 100 kHz or for C > 1 μF at 10 kHz	
4.15	Solvent resistance of the marking	Isopropylalcohol at room temperature Method: 1 Rubbing material: cotton wool	No visible damage Legible marking
4.6	Rapid change of temperature	Immersion time: 5.0 min \pm 0.5 min $\theta A = -55$ °C $\theta B = +105$ °C °C $\theta B = +105$ °C	
4.7	Vibration	Visual examination Mounting: see section "Mounting" for more information Procedure B4 Frequency range: 10 Hz to 55 Hz Amplitude: 0.75 mm or Acceleration 98 m/s² (whichever is less severe) Total duration 6 h	No visible damage

Document Number: 28124 Revision: 08-Aug-2018 For technical questions, contact: dc-film@vishay.com

Vishay BCcomponents AC and Pulse Double Metallized Polypropylene Film Capacitors MMKP Radial Potted Type

SUB-CI	LAUSE NUMBER AND TEST	CONDITIONS	PERFORMANCE REQUIREMENTS
	ROUP C1B OTHER PART OF LE OF SUB-GROUP C1		
4.7.2 4.9	Final inspection Shock	Visual examination Mounting: See section "Mounting" for more information Pulse shape: Half sine Acceleration: 490 m/s² Duration of pulse: 11 ms	No visible damage
4.9.3	Final measurements	Visual examination Capacitance Tangent of loss angle Insulation resistance	No visible damage $ \Delta C/C \leq 1 \text{ % of the value measured in 4.6.1}$ Increase of $\tan \delta \leq 0.0005$ for: $C \leq 100$ nF or ≤ 0.001 for: 100 nF < $C \leq 470$ nF or ≤ 0.0015 for: $C > 470$ nF Compared to values measured in 4.6.1 As specified in section "Insulation
SIIB-CI	ROUP C1 COMBINED SAMPLE OF	Insulation resistance	Resistance" of this specification
	MENS OF SUB-GROUPS		
4.10 4.10.2 4.10.3	Climatic sequence Dry heat Damp heat cyclic	Temperature: + 105 °C Duration: 16 h	
4.10.4	Test Db, first cycle Cold	Temperature: - 55 °C	
4.10.6	Damp heat cyclic Test Db, remaining cycles	Duration: 2 h	
4.10.6.2	2 Final measurements	Voltage proof = U _{Rdc} for 1 min within 15 min after removal from testchamber Visual examination Capacitance	No breakdown of flash-over No visible damage Legible marking For original pitch = 22.5 mm and 27.5 mm: $ \Delta C/C \le 3$ % of the value measured in 4.4.2 or 4.9.3
		Tangent of loss angle	Increase of $\tan \delta$ ≤ 0.0005 for: $C \leq 100$ nF or ≤ 0.001 for: 100 nF < $C \leq 470$ nF or ≤ 0.0015 for: $C > 470$ nF Compared to values measured in 4.3.1 or 4.6.1
		Insulation resistance	\geq 50 % of values specified in section "Insulation Resistance" of this specification
SUB-GI	ROUP C2		
4.11	Damp heat steady state	56 days, 40 °C, 90 % to 95 % RH no load	
4.11.1	Initial measurements	Capacitance Tangent of loss angle at 1 kHz	
4.11.3	Final measurements	Voltage proof = U _{Rdc} for 1 min within 15 min after removal from testchamber	No breakdown of flash-over
		Visual examination Capacitance	No visible damage Legible marking $ \Delta C/C \le 1$ % of the value measured in
		Tangent of loss angle	4.11.1. Increase of $\tan \delta$ ≤ 0.0005 for: $C \leq 100$ nF or ≤ 0.001 for: 100 nF $< C \leq 470$ nF or ≤ 0.0015 for: $C \leq 470$ nF Compared to values measured in 4.11.1
		Insulation resistance	$\geq 50~\%$ of values specified in section "Insulation Resistance" of this specification

www.vishay.com 210 For technical questions, contact: dc-film@vishay.com

Document Number: 28124
Revision: 08-Aug-2018

AC and Pulse Double Metallized Polypropylene Film Capacitors MMKP Radial Potted Type

Vishay BCcomponents

SUB-C	LAUSE NUMBER AND TEST	CONDITIONS	PERFORMANCE REQUIREMENTS
SUB-G	ROUP C3A		
4.12.1	Endurance test at 50 Hz alternating voltage	Duration: 2000 h 1.25 x U _{Rdc} at 105 °C	
4.12.1.1	1 Initial measurements	Capacitance Tangent of loss angle: For $C \le 1 \mu F$ at 100 kHz or for $C > 1 \mu F$ at 10 kHz	
4.12.1.3	3 Final measurements	Visual examination	No visible damage Legible marking
		Capacitance	$\left \Delta C/C\right \leq 5$ % compared to values measured in 4.12.1.1
		Tangent of loss angle	Increase of tan δ \leq 0.0005 for: C \leq 100 nF or \leq 0.001 for: 100 nF < C \leq 470 nF or \leq 0.0015 for: C > 470 nF Compared to values measured in 4.12.1.1
		Insulation resistance	\geq 50 % of values specified in section "Insulation Resistance" of this specification
SUB-G	ROUP C4		
4.2.6	Temperature charcteristics Initial measurements Intermediate measurements Final measurements	Capacitance Capacitance at - 55 °C Capacitance at 20 °C Capacitance at + 105 °C Capacitance	For - 55 °C to + 20 °C: + 1 % $\leq \Delta C/C \leq 3.75$ % or for 20 °C to 105 °C: - 6 % $\leq \Delta C/C \leq 0$ % As specified in section "Capacitance" of this
	i iliai illeasuleilleilis	Insulation resistance	As specified in section "Capacitance" of this specification. As specified in section "Insulation Resistance" of this specification
4.13	Charge and discharge	10 000 cycles Charged to U_{Rdc} Discharge resistance: $R = \frac{U_{Rdc}}{5 \times C \times (2.5 \times dU/dt)}$	
4.13.1	Initial measurements	Capacitance Tangent of loss angle: For C ≤ 1 μF at 100 kHz or for C > 1 μF at 10 kHz	
4.13.3	Final measurements	Capacitance	$\left \Delta C/C\right \leq 1$ % compared to values measured in 4.13.1
		Tangent of loss angle	Increase of tan δ ≤ 0.0005 for: $C \leq 100$ nF or ≤ 0.001 for: 100 nF $< C \leq 470$ nF or ≤ 0.0015 for: $C > 470$ nF Compared to values measured in 4.13.1
		Insulation resistance	\geq 50 % of values specified in section "Insulation Resistance" of this specification

Legal Disclaimer Notice

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Hyperlinks included in this datasheet may direct users to third-party websites. These links are provided as a convenience and for informational purposes only. Inclusion of these hyperlinks does not constitute an endorsement or an approval by Vishay of any of the products, services or opinions of the corporation, organization or individual associated with the third-party website. Vishay disclaims any and all liability and bears no responsibility for the accuracy, legality or content of the third-party website or for that of subsequent links.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.