

www.vishay.com

RoHS

Vishay BCcomponents

AC and Pulse Metallized Polypropylene Film Capacitors MKP Radial Potted Type

F = 7.5 mm + 0.6 mm / - 0.1 mm

APPLICATIONS

Where steep pulses occur e.g. SMPS (switch mode power supplies). Electronic lighting e.g. ballast. Motor control circuits.

REFERENCE SPECIFICATIONS

IEC 60384-17

MARKING

C-value; tolerance; rated voltage; code for dielectric material; manufacturer location; manufacturer's type; manufacturer's logo; year and week

DIELECTRIC

Polypropylene film

ELECTRODES

Metallized

CONSTRUCTION

Internal serial construction

RATED (DC) VOLTAGE

1600 V, 2000 V

RATED (AC) VOLTAGE

550 V, 700 V

RATED PEAK-TO-PEAK VOLTAGE

1600 V, 2000 V

FEATURES

- 7.5 mm bent back pitch, 10 mm and 15 mm lead pitch
- Low contact resistance
- · Low loss dielectric
- · Small dimensions for high density packaging
- Supplied loose in box and taped on reel
- Material categorization: for definitions of compliance please see <u>www.vishay.com/doc?99912</u>

ENCAPSULATION

Flame retardant plastic case and epoxy resin UL-class 94 V-0

CLIMATIC CLASS ACCORDING TO IEC 60068-1

55/110/56

CAPACITANCE RANGE (E24 SERIES)

0.00047 µF to 0.033 µF

CAPACITANCE TOLERANCE

±5%

LEADS

Tinned wire

RATED (DC) TEMPERATURE

85 °C

RATED (AC) TEMPERATURE

85 °C

MAXIMUM APPLICATION TEMPERATURE

110 °C

MAXIMUM OPERATING TEMPERATURE FOR LIMITED TIME

125 °C

PERFORMANCE GRADE

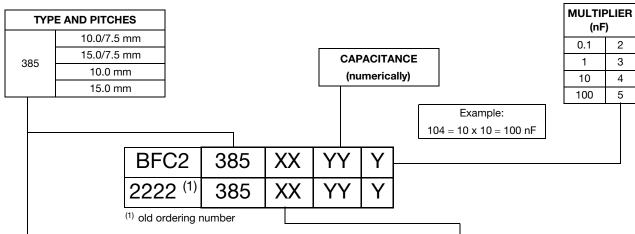
Grade 1 (long life)

STABILITY GRADE

Grade 2

DETAIL SPECIFICATION

For more detailed data and test requirements contact: <u>dc-film@vishay.com</u>


1 or technical questions, contact: dc-film@vishav.c

MKP 385

Vishay BCcomponents

COMPOSITION OF CATALOG NUMBER

ТҮРЕ	PACKAGING	LEAD CONFIGURATION		PRE	ERRED T	PES	
TIPE	PACKAGING	LEAD CONFIGURATION	C-TOL.	160	0 V 0	200	V 00
	Loose in box	lead length 3.5 + 1/- 0.5 mm or 3.5 ± 0.3 mm	±5%	00	50	60	80
	Taped on reel ⁽¹⁾	H = 18.5 mm; P ₀ = 12.7 mm reel diameter = 500 mm	±5%	02	52	62	82
385	Taped on reel (bent back to 7.5 mm) ⁽¹⁾	$H = 16.0 \text{ mm}; P_0 = 15.0 \text{ mm}$ reel diameter = 500 mm	± 5 %	03	53	63	83
	Ammopack ⁽¹⁾	$H = 18.5 \text{ mm}; P_0 = 12.7 \text{ mm}$	±5%	06	56	66	86
	Ammopack (bent back to 7.5 mm) ⁽¹⁾	H = 16.0 mm; P ₀ = 15.0 mm	±5%	08	58	68	88
					0	N REQUES	т
	Loose in box	lead length 5.0 \pm 1.0 mm	±5%	01	51	61	81
	Loose in box	lead length 25.0 \pm 2.0 mm	±5%	04	54	64	84
385	Taped on reel (bent back to 7.5 mm) ⁽¹⁾	$H = 16.0 \text{ mm}; P_0 = 15.0 \text{ mm}$ reel diameter = 356 mm	± 5 %	05	55	65	85
	Loose in box	lead length 3.2 + 0.3/- 0.6 mm	±5%	07	57	67	87

Note

⁽¹⁾ For detailed tape specifications refer to "Packaging Information" <u>www.vishay.com/doc?28139</u> or end of catalog

SPECIFIC REFERENCE DATA (1600 VDC)

DESCRIPTION	VA	LUE	
Tangent of loss angle:	at 10 kHz	at 100 kHz	
	≤ 5 x 10 ⁻⁴	≤ 15 x 10 ⁻⁴	
Rated voltage pulse slope (dU/dt)R			
P = 10 mm and 10 mm bent back to 7.5 mm	4000) V/µs	
P = 15 mm and 15 mm bent back to 7.5 mm	2000 V/µs		
R between leads, for C \leq 1 μF at 500 V; 1 min	> 100 000 MΩ		
R between leads and case; 500 V; 1 min	> 30 000 M Ω		
Ionization (AC) voltage (typical value) at 20 pC peak discharge	> 600 V		
Withstanding (DC) voltage (cut off current 10 mA); rise time 100 V/s	2560 V; 1 min		
Withstanding (DC) voltage between leads and case	2840 V; 1 min		
Maximum application temperature	110 °C		

Revision: 17-Mar-16

U_{RDC} = 1600 V; U_{RAC} = 550 V; U_{P-P} = 1600 V; C-TOL. = ± 5 %

				CAT		IBER BFC2	385 XXYYY	AND PACK	AGING	С
			LOOSE I	N BOX		REEL		AMMOPACK		
С (µF)	DIMENSIONS w x h (h') x l (mm)	MASS (g) ⁽¹⁾	LEADS 3.5 mm	LEADS 25.0 mm	ORIGINAL		7.5 mm BACK)	ORIGINAL	PITCH = 7.5 mm	
			+ 1 mm / - 0.5 mm ⁽²⁾	± 2.0 mm	PITCH	Ø 500 mm	Ø 365 mm	PITCH	(BENT BACK)	
			XX (SPQ)	XX (SPQ)	XX (SPQ)	XX (SPQ)	XX (SPQ)	XX (SPQ)	XX (SPQ)	
PI	TCH = 10 mm ± 0.4 mm	; d _t = 0.6	60 mm ± 0.06	6 mm	PITCH = 10.0 mm		- 7.5 mm BACK)	PITCH = 10.0 mm	PITCH = 7.5 mm (BENT BACK)	
0.002										202
0.0022			50	54	52	53		56	58	222
0.0024	4.0 x 10.0 (12.0) x 12.5	0.66	(1000)	(1250)	(1400)	(2000)	-	(950)	(1300)	242
0.0027			()	()	(1.1.1.1)	()		()	()	272
0.003										302
0.0033										332
0.0036	5.0 x 11.0 (13.0) x 12.5	0.90	50	54	52	53	-	56	58	362
0.0039		0.00	(1000)	(1250)	(1000)	(1900)		(750)	(1000)	392
0.0043										432
0.0047										472
0.0051			50	54	52	53		56	58	512
0.0056	6.0 x 12.0 (14.0) x 12.5	1.1	(750)	(750)	(900)	(1500)	-	(600)	(850)	562
0.0062			()	()	· · /	()		· · /	· · · ·	622
0.0068										682
PI	TCH = 15 mm ± 0.4 mm	; d _t = 0.6	60 mm ± 0.06	i mm	PITCH = 15.0 mm		a 7.5 mm BACK)			
0.0039						-				392
0.0043										432
0.0047										472
0.0051			00 (1250)	04 (1000)	02 (1100)	03 (950)	05 (550)	-	-	512
0.0056	5.0 x 11.0 (13.0) x 17.5	1.1	(1200)	(1000)	(1100)	(000)	(000)			562
0.0062										622
0.0068										682
0.0075			50	54	52	53	55			752
0.0082			(1250)	(1000)	(1100)	(950)	(550)		-	822
0.0091										912
0.010	6.0 x 12.0 (14.0) x 17.5	1.4	50	54	52	53	55	_	_	103
0.011	0.0 x 12.0 (14.0) x 17.0	1.4	(1000)	(1000)	(900)	(800)	(450)			113
0.012										123
PI	TCH = 15 mm ± 0.4 mm	; d _t = 0.8	30 mm ± 0.08	3 mm	PITCH = 15.0 mm		: 7.5 mm BACK)			
0.013							, í			133
0.015	7.0 x 13.5 (15.5) x 17.5	2.0	50	54	52	53	55	-	-	153
0.016			(1000)	(500)	(800)	(700)	(400)			163
0.018										183
0.020			50	54	52	53	55			203
0.022	8.5 x 15.0 (17.0) x 17.5	2.5	(1000)	(500)	(650)	(550)	(300)	-	-	223
0.024			. ,							243
0.027										273
0.030	10.0 x 16.5 (18.5) x 17.5	3.3	50 (500)	54 (500)	52 (600)	53 (500)	55 (250)	-	-	303
0.000										

Notes

• SPQ = Standard Packing Quantity

⁽¹⁾ Net weight for short lead component

 $^{(2)}$ I_t = 3.5 mm \pm 0.3 mm for pitch = 15 mm

Revision: 17-Mar-16

3

Document Number: 28152

SPECIFIC REFERENCE DATA (2000 V_{DC})

DESCRIPTION	VALUE		
Tangent of loss angle:	at 10 kHz	at 100 kHz	
	$\le 5 \times 10^{-4}$	≤ 15 x 10 ⁻⁴	
Rated voltage pulse slope (dU/d _t) _R		•	
P = 10 mm and 10 mm bent back to 7.5 mm	4000 V/µs		
P = 15 mm and 15 mm bent back to 7.5 mm	2000 V/µs		
R between leads, for C \leq 1 μ F at 500 V; 1 min	> 100 000 MΩ		
R between leads and case; 500 V; 1 min	ween leads and case; 500 V; 1 min $>$ 30 000 M Ω		
Ionization (AC) voltage (typical value) at 20 pC peak discharge	> 750 V		
Withstanding (DC) voltage (cut off current 10 mA); rise time 100 V/s	3200 V; 1 min		
Withstanding (DC) voltage between leads and case	2840 V; 1 min		
Maximum application temperature	110 °C		

U_{RDC} = 2000 V; U_{RAC} = 700 V; U_{P-P} = 2000 V; C-TOL. = ± 5 %

			CATALOG NUMBER BFC2 385 XXYYY AND PACKAGING									
			LOOSE	IN BOX		REEL		AMMO	PACK	C VALUE		
С (µF)	DIMENSIONS w x h (h') x l (mm)	MASS (g) ⁽¹⁾	LEADS 3.5 mm	LEADS ORIGINAL (BENT BACK) ORIGINAL 7.5 m		GINAL (BENT BACK)	PITCH = 7.5 mm					
			+ 1 mm / - 0.5 mm ⁽²⁾	± 2.0 mm	PITCH	Ø 500 mm	Ø 365 mm	PITCH	(BENT BACK)			
			XX (SPQ)	XX (SPQ)	XX (SPQ)	XX (SPQ)	XX (SPQ)	XX (SPQ)	XX (SPQ)	YYY		
	PITCH = 10 mm ± 0	.4 mm; c	d _t = 0.60 mm	± 0.06 mm		PITCH = 10.0 mm		= 7.5 mm BACK)	PITCH = 10.0 mm	PITCH = 7.5 mm		
0.00047										471		
0.00051										511		
0.00056										561		
0.00062										621		
0.00068										681		
0.00075										751		
0.00082	4.0 x 10.0 (12.0) x 12.5	0.66	60	64	62	63	_	66	68	821		
0.00091	4.0 × 10.0 (12.0) × 12.0	0.00	0.00	0.00 (1	(1000) ((1250)	(1400)	(2000)		(950)	(1300)	911
0.001									102			
0.0011										112		
0.0012												122
0.0013										132		
0.0015										152		
0.0016										162		
0.0018										182		
0.002	5.0 x 11.0 (13.0) x 12.5	0.90	60	64	62	63	-	66	68	202		
0.0022			(1000)	(1000)	(1100)	(1900)		(750)	(1000)	222		
0.0024										242		
0.0027										272		
0.003	6.0 x 12.0 (14.0) x 12.5	1.1	60	64	62	63	-	66	68	302		
0.0033			(750)	(750)	(900)	(1500)		(600)	(850)	332		
0.0036										362		

Revision: 17-Mar-16

MKP 385

Vishay BCcomponents

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	VALUE TCH = .5 mm BENT SACK) XX SPQ) YYY 471 511 561 621 681 751
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$.5 mm BENT BACK) XX SPQ) YYY SPQ 471 511 561 621 681 751
PITCH = 15 mm ± 0.4 mm; dt = 0.60 mm ± 0.06 mm PITCH = 15.0 mm PITCH = 15.0 mm PITCH = (BENT BACK) O(SPQ) (SPQ) (SPQ) (SPQ) (SPQ) (SPQ) (SPQ) (SPQ) (SPQ) (SPQ)	SPQ)YYY 471 511 561 621 681 751
P11CH = 15 mm ± 0.4 mm; dt = 0.00 mm ± 0.06 mm 15.0 mm (BENT BACK) 0.00047 0.00051 0.00056 0.00056 0.00062 0.00068 0.00075 0.00082 0.00091 5.0 x 11.0 (13.0) x 17.5 1.1 80 84 82 83 85 0.00091 5.0 x 11.0 (13.0) x 17.5 1.1 (1250) (1000) (1100) (950) (550)	511 561 621 681 751
0.00047 0.00051 0.00056 0.00062 0.00068 0.00075 0.00082 0.00091 5.0 x 11.0 (13.0) x 17.5 1.1 80 84 82 83 85 (1000) (1100) (950) -	511 561 621 681 751
0.00056 0.00062 0.00068 0.00075 0.00082 0.00091 5.0 x 11.0 (13.0) x 17.5 1.1 80 84 82 83 85 (1000) (1100) (950) (550) -	561 621 681 751
0.00062 0.00068 0.00075 0.00082 0.00091 5.0 x 11.0 (13.0) x 17.5 1.1 80 84 82 83 85 (1250) (1000) (1100) (950) (550) -	621 681 751
0.00068 0.00075 0.00082 0.00091 5.0 x 11.0 (13.0) x 17.5 1.1 80 84 82 83 85 (1000) (1100) (950) (550) -	681 751
0.00075 80 84 82 83 85 - 0.00091 5.0 x 11.0 (13.0) x 17.5 1.1 (1250) (1000) (1100) (950) (550) -	751
0.00082 0.00091 5.0 x 11.0 (13.0) x 17.5 1.1 80 84 82 83 85 (550) -	
0.00091 5.0 x 11.0 (13.0) x 17.5 1.1 80 84 82 83 85 -	001
0.00091 5.0 x 11.0 (13.0) x 17.5 1.1 (1250) (1000) (1100) (950) (550) -	821
0.0010	- 911
	102
0.0011	112
0.0012	122
0.0013	132
0.0015	152
0.0016	162
0.0018	182
PITCH = 15 mm ± 0.4 mm; d _t = 0.60 mm ± 0.06 mm PITCH = PITCH = 7.5 mm (BENT BACK)	
0.0020	202
0.0022	222
0.0024	242
80 84 82 83 85	- 272
0.0027 (1250) (1000) (1100) (950) (550)	302
0.0033 5.0 x 11.0 (13.0) x 17.5 1.1	332
0.0036	362
0.0039	392
60 64 62 63 65	- 432
0.0043 (1250) (1000) (1100) (950) (550)	472
0.0051	512
0.0056 6 0 x 10 0 (14 0) x 17 5 1 4 60 64 62 63 65	562
0.0062 6.0 x 12.0 (14.0) x 17.5 1.4 00111 02111 03111 03111 0.0062 6.0 x 12.0 (14.0) x 17.5 1.4 (1000) (1000) (900) (800) (450) -	- 622
0.0068	682
PITCH = 15 mm ± 0.4 mm; d _t = 0.80 mm ± 0.08 mm 15.0 mm (BENT BACK)	
0.0075	752
60 61 63 63 65	822
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	912
0.010	103
0.011	113
$0.012 85 \times 150 (17.0) \times 17.5 2.5 60 64 62 63 65 -$	- 123
0.012 0.0 × 10.0 (11.0) × 11.0 2.0 (1000) (500) (650) (550) (300)	133
0.015	153
0.016 60 64 62 63 65	163
0.018 10.0 x 16.5 (18.5) x 17.5 3.3 (500) (500) (600) (500) (250) -	- 183
0.020	203

Notes

• SPQ = Standard Packing Quantity

⁽¹⁾ Net weight for short lead component

⁽²⁾ $I_t = 3.5 \text{ mm} \pm 0.3 \text{ mm}$ for pitch = 15 mm

Revision: 17-Mar-16

5

Document Number: 28152

www.vishay.com

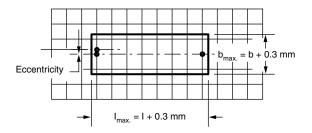
MKP 385

MOUNTING

Normal Use

The capacitors are designed for mounting on printed-circuit boards. The capacitors packed in bandoliers are designed for mounting on printed-circuit boards by means of automatic insertion machines.

For detailed tape specifications refer to "Packaging Information" <u>www.vishay.com/doc?28139</u> or end of catalog.


Specific Method of Mounting to Withstand Vibration and Shock

In order to withstand vibration and shock tests, it must be ensured that the stand-off pips are in good contact with the printed-circuit board. The capacitors shall be mechanically fixed by the leads.

Space Requirements on Printed-Circuit Board

The maximum length and width of film capacitors is shown in the drawing:

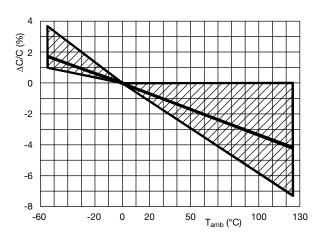
- Eccentricity as in drawing. The maximum eccentricity is smaller than or equal to the lead diameter of the product concerned.
- Product height with seating plane as given by "IEC 60717" as reference: $h_{max.} \le h + 0.3 \text{ mm.}$

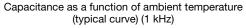
Storage Temperature

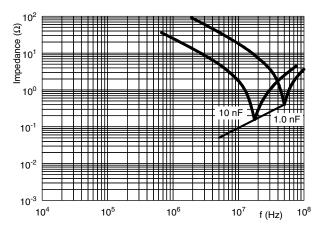
 T_{stg} = -25 °C to +35 °C with RH maximum 75 % without condensation

Ratings and Characteristics Reference Conditions

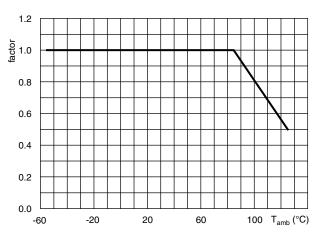
Unless otherwise specified, all electrical values apply to an ambient free temperature of 23 °C \pm 1 °C, an atmospheric pressure of 86 kPa to 106 kPa and a relative humidity of 50 % \pm 2 %.

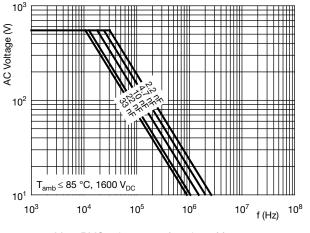

For reference testing, a conditioning period shall be applied over 96 h \pm 4 h by heating the products in a circulating air oven at the rated temperature and a relative humidity not exceeding 20 %.

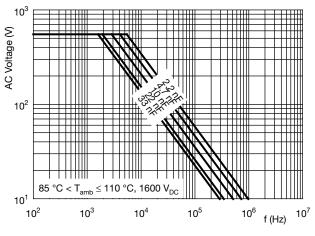



MKP 385

Vishay BCcomponents


CHARACTERISTICS



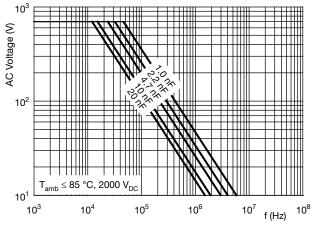

Impedance as a function of frequency (typical curve)

Max. DC and AC voltage as a function of temperature

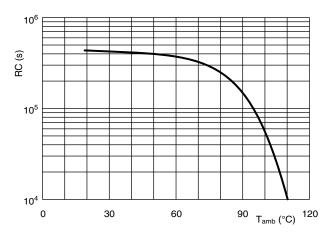
Max. RMS voltage as a function of frequency

Max. RMS voltage as a function of frequency

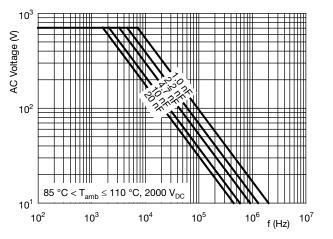
Revision: 17-Mar-16

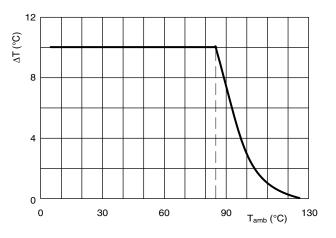

7 For technical questions, contact: <u>dc-film@vishay.com</u> Document Number: 28152

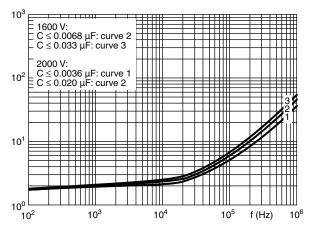
THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000



MKP 385


Vishay BCcomponents


Max. RMS voltage as a function of frequency


Insulation resistance as a function of ambient temperature (typical curve)

Max. RMS voltage as a function of frequency

Maximum allowed component temperature rise (ΔT) as a function of ambient temperature (T_{amb})

Tangent of loss angle as a function of frequency (typical curve)

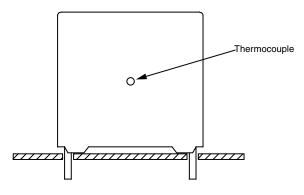
THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT

HEAT CONDUCTIVITY (G) AS A FUNCTION OF ORIGINAL PITCH AND CAPACITOR BODY THICKNESS IN mW/°C

W _{max.}	HEAT CONDUCTIVITY (mW/°C)			
(mm)	PITCH 10 mm	PITCH 15 mm		
4.0	6.5	-		
5.0	7.5	10		
6.0	9.0	11		
7.0	-	12		
8.5	-	16		
10.0	-	18		

POWER DISSIPATION AND MAXIMUM COMPONENT TEMPERATURE RISE

The power dissipation must be limited in order not to exceed the maximum allowed component temperature rise as a function of the free air ambient temperature.


The power dissipation can be calculated according type detail specification "HQN-384-01/101: Technical Information Film Capacitors" with the typical tgd of the curves.

The component temperature rise (Δ T) can be measured (see section "Measuring the Component Temperature" for more details) or calculated by $\Delta T = P/G$:

- ΔT = component temperature rise (°C)
- P = power dissipation of the component (mW)
- G = heat conductivity of the component (mW/°C)

MEASURING THE COMPONENT TEMPERATURE

A thermocouple must be attached to the capacitor body as in:

The temperature is measured in unloaded (T_{amb}) and maximum loaded condition (T_C).

The temperature rise is given by $\Delta T = T_C - T_{amb}$.

To avoid radiation or convection, the capacitor should be tested in a wind-free box.

MKP 385

APPLICATION NOTE AND LIMITING CONDITIONS

These capacitors are not suitable for mains applications as across-the-line capacitors without additional protection, as described hereunder. These mains applications are strictly regulated in safety standards and therefore electromagnetic interference suppression capacitors conforming the standards must be used.

To select the capacitor for a certain application, the following conditions must be checked:

- 1. The peak voltage (U_p) shall not be greater than the rated DC voltage (U_{RDC})
- 2. The peak-to-peak voltage (U_{p-p}) shall not be greater than the maximum (U_{p-p}) to avoid the ionization inception level
- 3. The voltage peak slope (dU/d_t) shall not exceed the rated voltage pulse slope in an RC-circuit at rated voltage and without ringing. If the pulse voltage is lower than the rated DC voltage, the rated voltage pulse slope may be multiplied by U_{RDC} and divided by the applied voltage.

For all other pulses following equation must be fulfilled:

$$2 x \int_{0}^{1} \left(\frac{dU}{dt}\right)^{2} x dt < U_{RDC} x \left(\frac{dU}{dt}\right)_{rated}$$

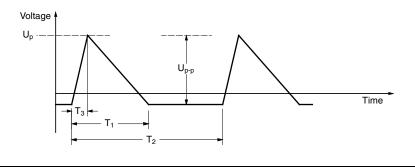
T is the pulse duration.

- 4. The maximum component surface temperature rise must be lower than the limits (see Fig. "Maximum allowed component temperature rise")
- 5. Since in circuits used at voltages over 280 V peak-to-peak the risk for an intrinsically active flammability after a capacitor breakdown (short circuit) increases, it is recommended that the power to the component is limited to 100 times the values mentioned in the table: "Heat conductivity"
- 6. When using these capacitors as across-the-line capacitor in the input filter for mains applications or as series connected with an impedance to the mains the applicant must guarantee that the following conditions are fulfilled in any case (spikes and surge voltages from the mains included).

VOLTAGE CONDITIONS FOR 6 ABOVE

ALLOWED VOLTAGES	T _{amb} ≤ 85 °C	85 °C < T _{amb} ≤ 110 °C	110 °C < T _{amb} ≤ 125 °C
Maximum continuous RMS voltage	U _{RAC}	0.7 x U _{RAC}	0.5 x U _{RAC}
Maximum temporary RMS-overvoltage (< 24 h)	1.25 x U _{RAC}	0.875 x U _{RAC}	0.625 x U _{RAC}
Maximum peak voltage (V _{o-p}) (< 2 s)	1.6 x U _{RDC}	1.1 x U _{RDC}	0.8 x U _{RDC}

Example


C = 4n7 1600 V used for the voltage signal shown in next figure.

 $U_{p-p} = 1000 \text{ V}; U_p = 900 \text{ V}; T_1 = 12 \text{ }\mu\text{s}; T_2 = 64 \text{ }\mu\text{s}; T_3 = 4 \text{ }\mu\text{s}$

The ambient temperature is 80 °C. In case of failure, the oscillation is blocked.

Checking the conditions

- 1. The peak voltage $U_p = 900$ V is lower than 1600 V_{DC}
- 2. The peak-to-peak voltage 1000 V is lower than 2 $\sqrt{2}$ x 550 V_{AC} = 1600 U_{p-p}
- 3. The voltage pulse slope dU/dt = 1000 V/4 μ s = 250 V/ μ s. This is lower than 4000 V/ μ s (see specific reference data for each version)
- 4. The dissipated power is 35 mW as calculated with fourier terms and typical tgd. The temperature rise for w_{max.} = 6.0 and pitch = 10 mm will be 35 mW/9 mW/°C = 3.9 °C This is lower than 10 °C temperature rise at 80 °C, according figure.
- 5. Oscillation is blocked
- 6. Not applicable
- Voltage signal:

Revision: 17-Mar-16

10

Document Number: 28152

INSPECTION REQUIREMENTS

General Notes

Sub-clause numbers of tests and performance requirements refer to the "Sectional Specification, Publication IEC 60384-17 and Specific Reference Data".

Group C Inspection Requirements

SUB-C	LAUSE NUMBER AND TEST	CONDITIONS	PERFORMANCE REQUIREMENTS
	ROUP C1A PART OF SAMPLE B-GROUP C1		
4.1	Dimensions (detail)		As specified in chapters "General Data" of this specification
4.3.1	Initial measurements	Capacitance Tangent of loss angle at 100 kHz	
4.3	Robustness of terminations	Tensile: load 10 N; 10 s Bending: load 5 N; 4 x 90°	No visible damage
4.4	Resistance to soldering heat	Method: 1A Solder bath: 280 °C ± 5 °C Duration: 10 s	
4.14	Component solvent resistance	Isopropylalcohol at room temperature Method: 2 Immersion time: 5 min ± 0.5 min Recovery time: min. 1 h, max. 2 h	
4.4.2	Final measurements	Visual examination	No visible damage Legible marking
		Capacitance	$ \Delta C/C \le 1 \ \% + 5 \ pF$ of the value measured initially
		Tangent of loss angle	Increase of tan $\delta : \le 0.0005$ Compared to values measured in 4.3.1
	ROUP C1B PART OF SAMPLE B-GROUP C1		
4.6.1	Initial measurements	Capacitance Tangent of loss angle at 100 kHz	
4.15	Solvent resistance of the marking	Isopropylalcohol at room temperature Method: 1 Rubbing material: cotton wool Immersion time: 5 min ± 0.5 min	No visible damage Legible marking
4.6	Rapid change of temperature	θA = -55 °C θB = +105 °C 5 cycles Duration t = 30 min	
4.6.1	Inspection	Visual examination	No visible damage
4.7	Vibration	Mounting: See section "Mounting" of this specification Procedure B4 Frequency range: 10 Hz to 55 Hz Amplitude: 0.75 mm or Acceleration 98 m/s ² (whichever is less severe) Total duration 6 h	

Downloaded from Arrow.com.

Document Number: 28152

www.vishay.com

Vishay BCcomponents

MKP 385

SUB-CL	AUSE NUMBER AND TEST	CONDITIONS	PERFORMANCE REQUIREMENTS
4.7.2	Final inspection	Visual examination	No visible damage
4.9	Shock	Mounting: see section "Mounting" of this specification Pulse shape: half sine Acceleration: 490 m/s ² Duration of pulse: 11 ms	
4.9.3	Final measurements	Visual examination	No visible damage
		Capacitance	For C $ \Delta C/C \le 2 \%$ or of the value measured in 4.6.1.
		Tangent of loss angle	Increase of tan δ : \leq 0.0005 Compared to values measured in 4.6.1
		Insulation resistance	As specified in section "Insulating Resistance" of this specification
	ROUP C1 COMBINED SAMPLE CIMENS OF SUB-GROUPS ID C1B		
4.10	Climatic sequence		
4.10.2	Dry heat	Temperature: +105 °C Duration: 16 h	
4.10.3	Damp heat cyclic Test Db, first cycle		
4.10.4	Cold	Temperature: -55 °C Duration: 2 h	
4.10.6	Damp heat cyclic Test Db, remaining cycles		
4.10.6.2	Final measurements	Voltage proof = U_{RDC} for 1 min within 15 min after removal from testchamber	No breakdown of flash-over
		Visual examination	No visible damage Legible marking
		Capacitance	$ \Delta C/C \le 2$ % of the value measured in 4.4.2 or 4.9.3
		Tangent of loss angle	Increase of tan δ : \leq 0.005 Compared to values measured in 4.3.1 or 4.6.1
		Insulation resistance	≥ 50 % of values specified in section "Insulation Resistance" of this specification

Document Number: 28152

www.vishay.com

Vishay BCcomponents

MKP 385

SUB-CLAUSE NUMBER AND TEST	CONDITIONS	PERFORMANCE REQUIREMENTS
SUB-GROUP C2		
4.11 Damp heat steady state	56 days, 40 °C, 90 % to 95 % RH no load	
4.11.1 Initial measurements	Capacitance Tangent of loss angle at 1 kHz	
4.11.3 Final measurements	Voltage proof = U_{RDC} for 1 min within 15 min after removal from testchamber	No breakdown of flash-over
	Visual examination	No visible damage Legible marking
	Capacitance	$ \Delta C/C \le 1$ % + 5 pF of the value measured in 4.11.1.
	Tangent of loss angle	Increase of tan $\delta : \le 0.0005$ Compared to values measured in 4.11.1
	Insulation resistance	\geq 50 % of values specified in section "Insulation Resistance" of this specification
SUB GROUP C3A		
4.12.1 Endurance	Duration: 2000 h Temperature: 85 °C Voltage: 1.25 x U _{RAC} V _{RMS} , 50 Hz Duration: 2000 h Temperature: 105 °C	
4.12.1.1 Initial measurements	Voltage: 0.875 x U _{RAC} V _{RMS} , 50 Hz Capacitance Tangent of loss angle at 100 kHz	
4.12.1.3 Final measurements	Visual examination	No visible damage Legible marking Temperature: 85 °C
	Capacitance	$\begin{array}{l} \Delta C/C \leq 5 \ \% \ for \ C > 10 \ nF \\ \Delta C/C \leq 8 \ \% \ for \ C \leq 10 \ nF \\ compared to values measured in 4.12.1.1 \end{array}$
	Tangent of loss angle	Increase of tan $\delta : \le 0.005$ Compared to values measured in 4.12.1.1
	Insulation resistance	\geq 50 % of values specified in section "Insulation Resistance" of this specification
SUB GROUP C3B		
4.12.2 Endurance test at 50 Hz alternating voltage	Duration: 500 h	
4.12.2.1 Initial measurements	Voltage: 0.625 x U _{RAC} at 125 °C Capacitance Tangent of loss angle: at 100 kHz	
4.12.2.3 Final measurements	Visual examination	No visible damage Legible marking
	Capacitance	$ \Delta C/C \le 10$ % for C + 100 pF compared values measured in 4.42.2.1
	Tangent of loss angle	Increase of tan $\delta : \le 0.0005$ Compared to values measured in 4.12.2.1
	Insulation resistance	\geq 50 % of values specified in section "Insulation Resistance" of this specification

Revision: 17-Mar-16

13

Document Number: 28152

www.vishay.com

Vishay BCcomponents

MKP 385

SUB-C	LAUSE NUMBER AND TEST	CONDITIONS	PERFORMANCE REQUIREMENTS
SUB-G	ROUP C4		
4.2.6	Temperature characteristics Initial measurements Intermediate measurements	Capacitance Capacitance at -55 °C Capacitance at -20 °C Capacitance at +125 °C	For -55 °C to +20 °C: +1 % $\leq \Delta C/C \leq 3.75$ % or for 20 °C to 125 °C -7.5 % $\leq \Delta C/C \leq 0$ % compared to values measured in 4.12.1.1
	Final measurement	Capacitance	As specified in section "Capacitance" of this specification
		Insulation resistance	As specified in section "Insulation Resistance" of this specification
4.13	Charge and discharge	10 000 cycles Charged to U _R V _{DC} Discharge resistance: R = $\frac{U_R}{C x (2.5 x (dU/dt)_R)}$	
4.13.1	Initial measurements	Capacitance Tangent of loss angle: at 100 kHz or	
4.13.3	Final measurements	Capacitance	$ \Delta C/C \le 1$ % compared to values measured in 4.13.1
		Tangent of loss angle	Increase of tan $\delta : \leq 0.0005$ Compared to values measured in 4.13.1
		Insulation resistance	\geq 50 % of values specified in section "Insulation Resistance" of this specification
SUB-G	ROUP ADD 1		
A.1	Ignition of lamp test		
A.1.1	Initial measurements	Capacitance Tangent of loss angle at 100 kHz	
A.1. 2	Ignition of lamp test	Temperature: 85 °C 1000 cycles: 1 s ON 29 s OFF Frequency: 60 kHz Voltage: 1600 V type: 2800 V _{pp} 2000 V type: 3000 V _{pp}	
A.1. 2	Final measurements	Visual examination	No visible damage
		Capacitance	$ \Delta C/C \le 5$ % of the value measured in A.1.1
		Tangent of loss angle at 100 kHz	Increase of tan $\delta : \le 0.0005$ Compared to values measured in A.1.1
		Insulation resistance	\geq 50 % of values specified in section "Insulation Resistance" of this specification

14 For technical questions, contact: <u>dc-film@vishay.com</u>

THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.