

Vishay Roederstein

AC and Pulse Metallized Polypropylene Film Capacitors MKP Radial Potted Type

FEATURES

- 5 mm to 37.5 mm lead pitch
- Material categorization: for definitions of compliance please see www.vishay.com/doc?99912

RoHS

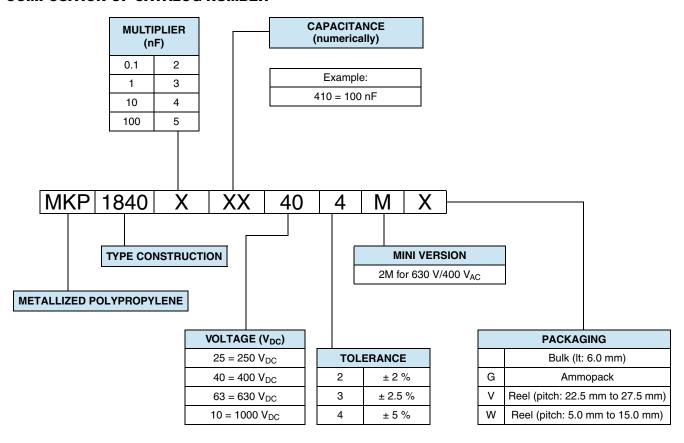
COMPLIANT
HALOGEN
FREE
GREEN
(5-2008)

APPLICATIONS

High frequency and pulse operations. SMPS, loudspeaker crossover networks, electronic ballast, storage, filter, timing and sample and hold circuits.

QUICK REFERENCE DATA				
Capacitance range	1000 pF to 6.8 μF			
Capacitance tolerance	± 5 %, ± 2 %, ± 2.5 % (± 10 % on request)			
Climatic testing class according to EN 60068-1	55/100/56			
Maximum application temperature	100 °C			
Reference standards	IEC 60384-16			
Dielectric	Polypropylene film			
Electrodes	Metallized			
Construction	Mono and internal series construction			
Encapsulation	Plastic case, epoxy resin sealed, flame retardant UL-class 94 V-0			
Leads	Tinned wire			
Marking	C-value; tolerance; rated voltage; manufacturer's type; code for dielectric material; manufacturer location; manufacturer's logo; year and week			
Rated DC voltages	250 V _{DC} , 400 V _{DC} , 630 V _{DC} , 1000 V _{DC} , 1600 V _{DC} , 2000 V _{DC}			
Rated AC voltages	160 V _{AC} , 220 V _{AC} , 250 V _{AC} , 400 V _{AC} , 500 V _{AC} , 600 V _{AC} , 700 V _{AC}			

Note


For more detailed data and test requirements, contact <u>dc-film@vishay.com</u>

DIMENSIONS in millimeters							
0.6	h max.	larking					
LEAD DIAMETER d _t	w	PITCH					
0.5 ± 0.05	-	5 to 7.5					
0.6 ± 0.06	-	10					
0.6 ± 0.06 ≤ 6 15							
0.8 ± 0.08	> 6	15					
0.8 ± 0.08	< 16 22.5 to 37.5						
1.0 ± 0.1	≥ 16.5	22.5 to 37.5					

Vishay Roederstein

COMPOSITION OF CATALOG NUMBER

Note

• For detailed tape specifications refer to packaging information www.vishay.com/doc?28139 or end of catalog

DESCRIPTION				VALUE		
Tangent of loss and	ule:	at 1 kHz		at 10 kHz	at ·	100 kHz
	gio.	10 x 10 ⁻⁴		10 x 10 ⁻⁴		
C ≤ 0.1 µF	_				40) x 10 ⁻⁴
$0.1 \ \mu F < C \le 1.0 \ \mu F$	-	10 x 10 ⁻⁴		10 x 10 ⁻⁴		-
C > 1.0 µF		10 x 10 ⁻⁴		-		-
PITCH (mm)		MAX	KIMUM PULSE R	ISE TIME (dU/dt) _R [V	//µs]	
PITCH (IIIII)	250 V _{DC}	400 V _{DC}	630 V _{DC}	1000 V _{DC}	1600 V _{DC}	2000 V _{DC}
5	360	540	1080	-	-	-
7.5	215	325	510	-	-	-
10	150	240	340	1365	4100	-
15	90	135	185	680	1340	3075
22.5	55	80	110	370	620	1365
27.5	40	65	85	285	455	-
37.5	30	45	60	195	300	-
R between leads, f	or C ≤ 1.0 µF at 10	0 V, 1 min			> 100 000 MΩ	
RC between leads,	for C > 1.0 µF at	100 V, 1 min			> 100 000 s	
R between leads a	nd case, 100 V, 1	nin			> 30 000 MΩ	
Withstanding (DC)	voltage (cut off cu	rent 10 mA) (1); rise tin	1.6 x U _{RDC} , 1 min			
Withstanding (DC)	voltage between le	ads and case			500 V, 1 min	
Maximum applicati	ion temperature				100 °C	

Note

⁽¹⁾ See "Voltage Proof Test for Metalized Film Capacitors": www.vishay.com/doc?28169

www.vishay.com

Vishay Roederstein

METALLIZED POLYPROPYLENE FILM CAPACITOR, MINI VERSION (M)

ELEC1	TRICAL DAT	A				
U _{RDC} (V)	CAP. (μF)	CAPACITANCE CODE	VOLTAGE CODE	V _{AC}	DIMENSIONS ⁽³⁾ w x h x l (mm)	PCM (mm)
	0.010	-310			3.5 x 8.5 x 7.5	5.0
	0.015	-315			3.5 x 8.5 x 7.5	5.0
	0.022	-322			3.5 x 8.5 x 7.5	5.0
<u> </u>	0.033	-333			3.5 x 8.5 x 7.5	5.0
_	0.047 0.068	-347 -368			4.0 x 9.0 x 10.0 4.0 x 9.0 x 10.0	7.5 7.5
-	0.10	-300 -410			5.0 x 10.5 x 10.0	7.5
	0.15	-415			5.0 x 11.0 x 12.5	10.0
	0.22	-422			6.0 x 12.0 x 12.5	10.0
250	0.33	-433	25	160	6.0 x 12.0 x 17.5	15.0
	0.47	-447			7.0 x 13.5 x 17.5	15.0
	0.68	-468			8.5 x 15.0 x 17.5	15.0
	1.0	-510			7.0 x 16.5 x 26.0	22.5
	1.5	-515			10.0 x 19.5 x 26.0	22.5
	2.2	-522			12.0 x 22.0 x 26.0	22.5
_	3.3	-533			13.0 x 23.0 x 31.0	27.5
	4.7	-547			15.0 x 25.0 x 31.5	27.5
	6.8 0.0068	-568 -268			14.5 x 24.5 x 41.5 3.5 x 8.5 x 7.5	37.5 5.0
-	0.010	-310			3.5 x 8.5 x 7.5	5.0
	0.015	-315			3.0 x 8.0 x 10.0	7.5
-	0.022	-322			4.0 x 9.0 x 10.0	7.5
	0.033	-333			4.0 x 9.0 x 10.0	7.5
	0.047	-347			5.0 x 10.5 x 10.0	7.5
	0.068	-368			6.0 x 11.5 x 10.0	7.5
	0.10	-410			5.0 x 11.0 x 17.5	15.0
	0.15	-415	40		6.0 x 12.0 x 17.5	15.0
400	0.22	-422		220 (2)	7.0 x 13.5 x 17.5	15.0
	0.33	-433			8.5 x 15.0 x 17.5	15.0
	0.47	-447			7.0 x 16.5 x 26.0	22.5
_	0.68	-468			8.5 x 18.0 x 26.0	22.5
-	1.0 1.5	-510 -515			10.0 x 19.5 x 26.0 13.0 x 23.0 x 31.0	22.5 27.5
	2.2	-515 -522			15.0 x 25.0 x 31.5	27.5
-	3.3	-533			18.0 x 28.0 x 31.5	27.5
	4.7	-547			18.0 x 32.5 x 41.0	37.5
	6.8	-568			21.5 x 38.5 x 43.0	37.5
	0.0010	-210			3.5 x 8.5 x 7.5	5.0
	0.0015	-215			3.5 x 8.5 x 7.5	5.0
	0.0022	-222			3.5 x 8.5 x 7.5	5.0
	0.0033	-233			3.0 x 8.0 x 10.0	7.5
_	0.0047	-247			3.0 x 8.0 x 10.0	7.5
_	0.0068	-268			3.0 x 8.0 x 10.0	7.5
_	0.010	-310			3.0 x 8.0 x 10.0	7.5
	0.015 0.022	-315 -322			4.0 x 9.0 x 10.0 4.0 x 10.0 x 12.5	7.5 10.0
-	0.022	-322			5.0 x 11.0 x 12.5	10.0
-	0.033	-347			6.0 x 12.0 x 12.5	10.0
630	0.068	-368	63	250 ⁽²⁾	5.0 x 11.0 x 17.5	15.0
	0.10	-410			6.0 x 12.0 x 17.5	15.0
	0.15	-415			8.5 x 15.0 x 17.5	15.0
	0.22	-422			10.0 x 16.5 x 17.5	15.0
	0.33	-433			8.5 x 18.0 x 26.0	22.5
	0.47	-447			10.0 x 19.5 x 26.0	22.5
	0.68	-468			11.0 x 21.0 x 31.0	27.5
	1.0	-510			13.0 x 23.0 x 31.0	27.5
<u> </u>	1.5	-515 -500			18.0 x 28.0 x 31.5	27.5
<u> </u>	2.2	-522 -533			21.0 x 31.0 x 31.0	27.5
-	3.3 4.7	-533 -547			18.0 x 32.5 x 41.0 21.5 x 38.5 x 43.0	37.5 37.5
l l	4.1	-J4 <i>1</i>			21.0 X 00.0 X 40.0	31.3

Revision: 27-Apr-2018 3 Document Number: 26018

www.vishay.com

Vishay Roederstein

ELEC1	TRICAL DATA	A				
U _{RDC} (V)	CAP. (μF)	CAPACITANCE CODE	VOLTAGE CODE	V _{AC}	DIMENSIONS ⁽³⁾ w x h x l (mm)	PCM (mm)
	0.010	-310			5.0 x 11.0 x 12.5	10.0 (1)
	0.015	-315			6.0 x 12.0 x 12.5	10.0 ⁽¹⁾
	0.022	-322			9.0 x 15.5 x 13.0	10.0 ⁽¹⁾
	0.033	-333			6.0 x 12.0 x 17.5	15.0 ⁽¹⁾
	0.047	-347			8.5 x 15.0 x 17.5	15.0 ⁽¹⁾
	0.068	-368			10.0 x 16.5 x 17.5	15.0 ⁽¹⁾
630	0.10	-410	63	400 ⁽²⁾	7.0 x 16.5 x 26.0	22.5 ⁽¹⁾
	0.15	-415			10.0 x 19.5 x 26.0	22.5 ⁽¹⁾
	0.22	-422			12.0 x 22.0 x 26.0	22.5 ⁽¹⁾
	0.33	-433			15.5 x 26.5 x 26.5	22.5 ⁽¹⁾
	0.47	-447			15.0 x 25.0 x 31.5	27.5 ⁽¹⁾
	0.68	-468			18.0 x 28.0 x 31.5	27.5 ⁽¹⁾
	1.0	-510			21.0 x 31.0 x 31.0	27.5 ⁽¹⁾
	0.0047	-247			4.0 x 10.0 x 12.5	10.0
	0.0068	-268			4.0 x 10.0 x 12.5	10.0
	0.010	-310			5.0 x 11.0 x 12.5	10.0
	0.015	-315			6.0 x 12.0 x 12.5	10.0
	0.022	-322			5.0 x 11.0 x 17.5	15.0
	0.033	-333			6.0 x 12.0 x 17.5	15.0
	0.047	-347		<u> </u>	8.5 x 15.0 x 17.5	15.0
1000	0.068	-368	10	500 ⁽²⁾	10.0 x 16.5 x 17.5	15.0
	0.10	-410			7.0 x 16.5 x 26.0	22.5
	0.15	-415		<u> </u>	10.0 x 19.5 x 26.0	22.5
	0.22	-422			12.0 x 22.0 x 26.0	22.5
	0.33	-433			13.0 x 23.0 x 31.0	27.5
	0.47	-447			15.0 x 25.0 x 31.5	27.5
	0.68	-468			18.0 x 28.0 x 31.5	27.5
	1.0	-510			20.0 x 35.0 x 31.5	27.5
	1.5	-515			18.0 x 32.5 x 41.5	37.5
	0.0068	-268			5.0 x 11.0 x 17.5	15.0
	0.010	-310			6.0 x 12.0 x 17.5	15.0
	0.015	-315			7.0 x 13.5 x 17.5	15.0
_	0.022	-322			8.5 x 15.0 x 17.5	15.0
	0.033 0.047	-333			10.0 x 16.5 x 17.5	15.0
1000	0.047	-347	10	COO (2)	8.5 x 18.0 x 26.0	22.5
1600		-368	13	600 ⁽²⁾	10.0 x 19.5 x 26.0	22.5
	0.10 0.15	-410 -415			12.0 x 22.0 x 26.0 13.0 x 23.0 x 31.0	22.5 27.5
	0.13	-422			18.0 x 28.0 x 31.5	27.5
	0.33	-433			21.0 x 31.0 x 31.0	27.5
	0.47	-447			20.0 x 35.0 x 31.5	27.5
	0.68	-468			18.5 x 35.5 x 43.0	37.5
	0.0010	-210			5.0 x 11.0 x 17.5	15
F	0.0015	-215		 	5.0 x 11.0 x 17.5	15
	0.0022	-222			5.0 x 11.0 x 17.5	15
	0.0022	-233			5.0 x 11.0 x 17.5	15
	0.0047	-247		 	5.0 x 11.0 x 17.5	15
2000	0.0068	-268	20	700 ⁽²⁾	6.0 x 12.0 x 17.5	15
-000 H	0.010	-310	20	'55 '	6.0 x 15.5 x 26.0	22.5
<u> </u>	0.015	-315			6.0 x 15.5 x 26.0	22.5
<u> </u>	0.022	-322			7.0 x 16.5 x 26.0	22.5
<u> </u>	0.033	-333			8.5 x 18.0 x 26.0	22.5
-	0.047	-347		1	10.0 x 19.5 x 26.0	22.5

Notes

- Further C-values upon request
- Please refer to X-capacitors in our catalog "RFI Suppression Components"
- (1) Ordering code -2M (e.g. MKP1840 410 635-2M)
- (2) Not suitable for mains applications
- (3) For tolerances see chapter "Space Requirements for Printed-Circuit Board Applications and Dimension Tolerances"

Revision: 27-Apr-2018 4 Document Number: 26018

www.vishay.com

Vishay Roederstein

RECOM	RECOMMENDED PACKAGING									
LETTER CODE	TYPE OF PACKAGING	HEIGHT (H) (mm)	REEL DIAMETER (mm)	ORDERING CODE EXAMPLES	PITCH ≤ 15	PITCH 22.5 TO 27.5	PITCH 37.5			
G	Ammo	18.5	S ⁽¹⁾	MKP1840410404MG	х	-	-			
W	Reel	18.5	350	MKP1840410404MW	х	-	-			
V	Reel	18.5	500	MKP1840510254MV	-	х	-			
G	Ammo	18.5	L (2)	MKP1840510254MG	-	х	-			
-	Bulk	-	-	MKP1840510254M	х	х	х			

Notes

- (1) S = box size 55 mm x 210 mm x 340 mm (w x h x l)
- (2) L = box size 60 mm x 360 mm x 510 mm (w x h x l)

EXAMPLE OF ORDERING CODE							
TYPE	CAPACITANCE CODE	VOLTAGE CODE	TOLERANCE CODE	MINI	PACKAGING CODE		
MKP1840	447	63	4	M	G		

Note

• Tolerance codes: **4** = 5 % (J); **3** = 2.5 % (H)

METALLIZED POLYPROPYLENE FILM CAPACITOR, MKP1840 PCM5, MINI VERSION (-5M)

ELECTR	ELECTRICAL DATA									
U _{RDC} (V)	CAP. (μF)	CAPACITANCE CODE	VOLTAGE CODE	V _{AC}	DIMENSIONS ⁽²⁾ w x h x l (mm)	PCM (mm)	d _t ± 0.05 (mm)			
	0.047	-347			4.5 x 9.0 x 7.2					
250	0.068	-368	25	160	6.0 x 11.0 x 7.2	5.0	0.5			
	0.10	-410			6.0 x 11.0 x 7.2					
	0.015	-315			4.5 x 9.0 x 7.2					
400	0.022	-322	40	220 (1)	6.0 x 11.0 x 7.2	5.0	0.5			
	0.033	-333			6.0 x 11.0 x 7.2					
	0.0033	-233			3.5 x 8.0 x 7.2					
	0.0047	-247			3.5 x 8.0 x 7.2					
630	0.0068	-268	63	250 ⁽¹⁾	3.5 x 8.0 x 7.2	5.0	0.5			
	0.010	-310			4.5 x 9.0 x 7.2					
	0.015	-315			6.0 x 11.0 x 7.2					

Notes

- Further C-values upon request
- (1) Not suitable for mains applications
- (2) For tolerances see chapter "Space Requirements for Printed-Circuit Board Applications and Dimension Tolerances"

RECOMMENDED PACKAGING								
LETTER CODE	TYPE OF PACKAGING	HEIGHT (H) (mm)	REEL DIAMETER (mm)	ORDERING CODE EXAMPLES	PITCH 5			
G	Ammo	18.5	S ⁽²⁾	MKP18403104045MG	х			
W	Reel	18.5	350	MKP18403104045MW	х			
_	Bulk	-	-	MKP18403104045M	х			

Note

(1) S = box size 55 mm x 210 mm x 340 mm (w x h x l)

EXAMPLE OF ORDERING CODE							
TYPE	CAPACITANCE CODE	VOLTAGE CODE	TOLERANCE CODE	MINI	PACKAGING CODE		
MKP1840	347	25	4	5M	G		

Note

• Tolerance codes: **4** = 5 % (J); **3** = 2.5 % (H)

Vishay Roederstein

MOUNTING

Normal Use

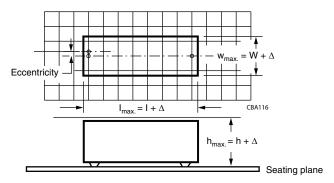
The capacitors are designed for mounting on printed-circuit boards. The capacitors packed in bandoleers are designed for mounting in printed-circuit boards by means of automatic insertion machines.

For detailed tape specifications refer to packaging information www.vishay.com/doc?28139 or end of catalog

Specific Method of Mounting to Withstand Vibration and Shock

www.vishay.com

In order to withstand vibration and shock tests, it must be ensure that the stand-off pips are in good contact with the printed-circuit board:


- For pitches ≤ 15 mm capacitors shall be mechanically fixed by the leads
- · For larger pitches the capacitors shall be mounted in the same way and the body clamped

Space Requirements for Printed Circuit-Board Applications and Dimension Tolerances

For the maximum product dimensions and maximum space requirements for length (I_{max.}), width (w_{max.}), and height (h_{max.}) following tolerances must be taken in account in the envelopment of the components as shown in the drawings below.

- For products with pitch \leq 15 mm, $\Delta w = \Delta l = 0.3$ mm and $\Delta h = 0.1$ mm
- For products with 15 mm < pitch \leq 27.5 mm, $\Delta w = \Delta l = 0.5$ mm and $\Delta h = 0.1$ mm
- For products with pitch = 37.5 mm, $\Delta w = \Delta l = 0.7$ mm; $\Delta h = 0.5$ mm
- For products with pitch = 52.5 mm, $\Delta w = \Delta I = 1.0$ mm and $\Delta h = 0.5$ mm

Eccentricity defined as in drawing. The maximum eccentricity is smaller than or equal to the lead diameter of the product concerned.

For the minimum product dimensions for length (I_{min.}), width (w_{min.}), and height (h_{min.}) following tolerances of the components are valid:

 $I_{min.} = I - \Delta I$, $w_{min.} = w - \Delta w$, and $h_{min.} = h - \Delta h$ following

- For products with pitch \leq 10 mm, $\Delta l = 0.3$ mm and $\Delta w = \Delta h = 0.3$ mm
- For products with pitch = 15 mm, $\Delta I = 0.5$ mm and $\Delta w = \Delta h = 0.5$ mm
- For products with 15 mm < pitch \leq 27.5 mm, $\Delta l = 1.0$ mm and $\Delta w = \Delta h = 0.5$ mm
- For products with pitch = 37.5 mm, $\Delta l = 1.0$ mm and $\Delta w = \Delta h = 1.0$ mm

SOLDERING CONDITIONS

For general soldering conditions and wave soldering profile, we refer to the application note:

"Soldering Guidelines for Film Capacitors": www.vishay.com/doc?28171

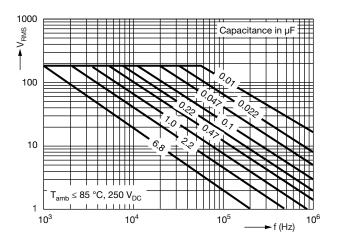
Storage Temperature

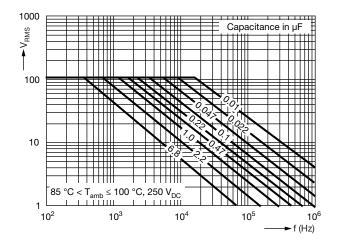
 T_{stq} = -25 °C to +35 °C with RH maximum 75 % without condensation

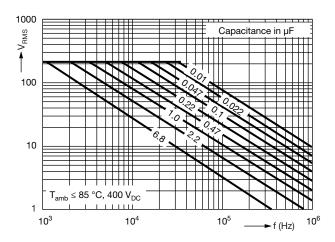
Ratings and Characteristics Reference Conditions

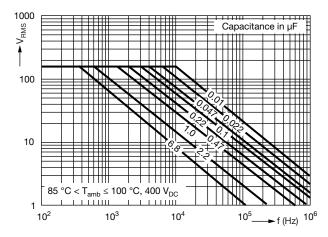
Unless otherwise specified, all electrical values apply to an ambient free temperature of 23 °C \pm 1 °C, an atmospheric pressure of 86 kPa to 106 kPa and a relative humidity of 50 % \pm 2 %.

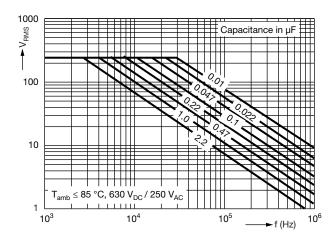
For reference testing, a conditioning period shall be applied over 96 h \pm 4 h by heating the products in a circulating air oven at the rated temperature and a relative humidity not exceeding 20 %.

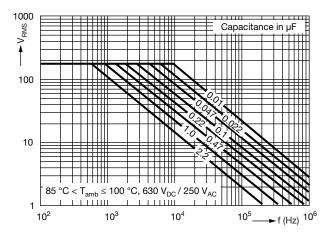


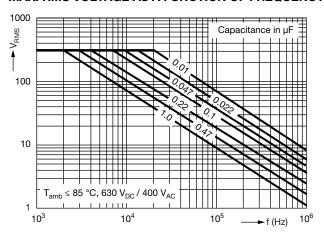

www.vishay.com

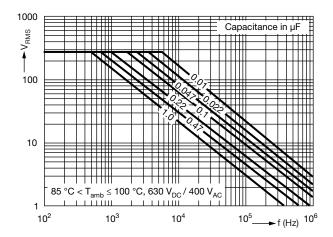

Vishay Roederstein

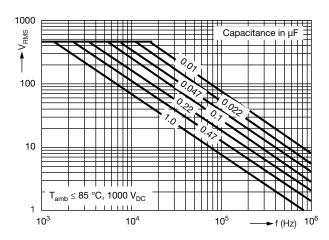

CHARACTERISTICS

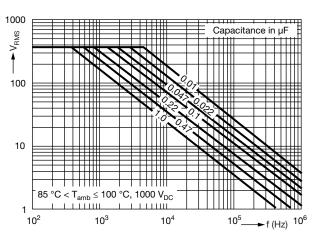

MAX. RMS VOLTAGE AS A FUNCTION OF FREQUENCY






www.vishay.com


Vishay Roederstein


CHARACTERISTICS

MAX. RMS VOLTAGE AS A FUNCTION OF FREQUENCY

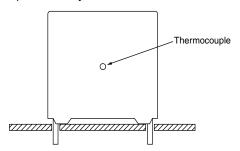
W _{max} .			HEAT	CONDUCTIVITY	/ (mW/°C)		
(mm)	PITCH 5 mm	PITCH 7.5 mm	PITCH 10 mm	PITCH 15 mm	PITCH 22.5 mm	PITCH 27.5 mm	PITCH 37.5 mm
3.0	-	4.0	-	-	-	-	-
3.5	3.5	-	-	-	-	-	-
4.0	-	5.0	6.0	-	-	-	-
4.5	4.5	-	-	-	-	-	-
5.0	5.0	6.5	-	-	-	-	ı
6.0	5.5	7.5	9.0	11.5	19.5	-	ı
7.0	-	-	-	13.5	22.0	-	ı
8.5	-	-	-	15.0	16.5	-	ı
9.0	-	-	14.0	-	-	-	ı
10.0	-	-	-	19.0	29.0	-	-
11.0	-	-	-	-	-	36.5	-
12.0	-	-	-	-	34.5	-	ı
13.0	-	-	-	-	-	42.5	1
15.0	-	-	-	-	-	49.0	ı
15.5	-	-	-	-	45.0	-	ı
18.0	-	-	-	-	-	57.0	ı
18.5	-	-	-	-	-	-	89.0
20.0	-	-	-	-	-	73.0	-
21.0	-	-	-	-	-	68.0	-
21.5	-	-	-	-	-	-	102.0

www.vishay.com

Vishay Roederstein

POWER DISSIPATION AND MAXIMUM COMPONENT TEMPERATURE RISE

The power dissipation must be limited in order not to exceed the maximum allowed component temperature rise as a function of the free air ambient temperature.


The power dissipation can be calculated according type detail specification "HQN-384-01/101: Technical Information Film Capacitors" with the typical tgd of the curves.

The component temperature rise (ΔT) can be measured (see section "Measuring the Component Temperature" for more details) or calculated by $\Delta T = P/G$:

- ΔT = component temperature rise (°C)
- P = power dissipation of the component (mW)
- G = heat conductivity of the component (mW/°C)

MEASURING THE COMPONENT TEMPERATURE

A thermocouple must be attached to the capacitor body as in:

The temperature is measured in unloaded (T_{amb}) and maximum loaded condition (T_C).

The temperature rise is given by $\Delta T = T_C - T_{amb}$.

To avoid radiation or convection, the capacitor should be tested in a wind-free box.

APPLICATION NOTE AND LIMITING CONDITIONS

For capacitors connected in parallel, normally the proof voltage and possibly the rated voltage must be reduced. For information depending of the capacitance value and the number of parallel connections contact: dc-film@vishay.com

These capacitors are not suitable for mains applications as across-the-line capacitors without additional protection, as described hereunder. These mains applications are strictly regulated in safety standards and therefore electromagnetic interference suppression capacitors conforming the standards must be used.

To select the capacitor for a certain application, the following conditions must be checked:

- 1. The peak voltage (U_P) shall not be greater than the rated DC voltage (U_{BDC})
- 2. The peak-to-peak voltage (U_{P-P}) shall not be greater than the maximum (U_{p-p}) to avoid the ionisation inception level
- 3. The voltage peak slope (dU/dt) shall not exceed the rated voltage pulse slope in an RC-circuit at rated voltage and without ringing. If the pulse voltage is lower than the rated DC voltage, the rated voltage pulse slope may be multiplied by U_{RDC} and divided by the applied voltage.

For all other pulses following equation must be fulfilled:

$$2 \ x \int\limits_{-\infty}^{T} \left(\frac{dU}{dt}\right)^2 x \ dt < U_{RDC} \ x \left(\frac{dU}{dt}\right)_{rated}$$

T is the pulse duration.

- 4. The maximum component surface temperature rise must be lower than the limits (see graph "Max. allowed component temperature rise").
- 5. Since in circuits used at voltages over 280 V peak-to-peak the risk for an intrinsically active flammability after a capacitor breakdown (short circuit) increases, it is recommended that the power to the component is limited to 100 times the values mentioned in the table: "Heat conductivity"
- 6. When using these capacitors as across-the-line capacitor in the input filter for mains applications or as series connected with an impedance to the mains the applicant must guarantee that the following conditions are fulfilled in any case (spikes and surge voltages from the mains included).

VOLTAGE CONDITIONS FOR 6 ABOVE						
ALLOWED VOLTAGES	T _{amb} ≤ 85 °C	85 °C < T _{amb} ≤ 100 °C				
Maximum continuous RMS voltage	U _{RAC}	U _{RAC}				
Maximum temperature RMS-overvoltage (< 24 h)	1.25 x U _{RAC}	0.875 x U _{RAC}				
Maximum peak voltage (V _{O-P}) (< 2 s)	1.6 x U _{RDC}	1.1 x U _{RDC}				

Revision: 27-Apr-2018 9 Document Number: 26018

Vishay Roederstein

INSPECTION REQUIREMENTS

www.vishay.com

General Notes

Sub-clause numbers of tests and performance requirements refer to the "Sectional Specification, Publication IEC 60384-2 and Specific Reference Data".

GROUP C INSPECTION REQUIREMENTS				
SUB-CLAUSE NUMBER AND TEST	CONDITIONS	PERFORMANCE REQUIREMENTS		
SUB-GROUP C1A PART OF SAMPLE OF SUB-GROUP C1				
4.1 Dimensions (detail)		As specified in chapter "General Data" of this specification		
4.3.1 Initial measurements	Capacitance Tangent of loss angle at $C \le 1 \mu F$ at 10 kHz $C > 1 \mu F$ at 1 kHz			
4.3 Robustness of terminations	Tensile and bending	No visible damage		
4.4 Resistance to soldering heat	Method: 1A Solder bath: 280 °C ± 5 °C Duration: 5 s			
4.14 Component solvent resistance	Isopropylalcohol at room temperature Method: 2 Immersion time: 5 min ± 0.5 min Recovery time: min. 1 h, max. 2 h			
4.4.2 Final measurements	Visual examination	No visible damage Legible marking		
	Capacitance	$ \Delta C/C \le 2$ % of the value measured initially		
	Tangent of loss angle	Increase of tan δ : \leq 0.002 Compared to values measured in 4.3.1		
SUB-GROUP C1B PART OF SAMPLE OF SUB-GROUP C1				
4.6.1 Initial measurements	Capacitance Tangent of loss angle at C ≤ 1 µF at 10 kHz C > 1 µF at 1 kHz	No visible damage		
4.15 Solvent resistance of the marking	Isopropylalcohol at room temperature Method: 1 Rubbing material: cotton wool Immersion time: 5 min ± 0.5 min	No visible damage Legible marking		
4.6 Rapid change of temperature	θA = lower category temperature θB = upper category temperature 5 cycles Duration t = 30 min			
4.7 Vibration	Visual examination Mounting: see section "Mounting" of this specification Procedure B4 Frequency range: 10 Hz to 55 Hz Amplitude: 0.75 mm or Acceleration 98 m/s² (whichever is less severe) Total duration 6 h	No visible damage Legible marking		
4.7.2 Final inspection	Visual examination	No visible damage		
4.9 Shock	Mounting: see section "Mounting" for more information Pulse shape: half sine Acceleration: 490 m/s² Duration of pulse: 11 ms			

Revision: 27-Apr-2018 10 Document Number: 26018

www.vishay.com Vishay Roederstein

	JP C INSPECTION REQUI		DEDECOMANIOS DECUMPENSOS
	LAUSE NUMBER AND TEST	CONDITIONS	PERFORMANCE REQUIREMENTS
	ROUP C1B PART OF SAMPLE 3-GROUP C1		
4.9.3	Final measurements	Visual examination	No visible damage
		Capacitance	$ \Delta C/C \le 2$ % of the value measured in 4.6.1
		Tangent of loss angle	Increase of tan $\delta \le 0.002$ Compared to values measured in 4.6.1
		Insulation resistance	As specified in section "Insulation Resistance" of this specification
	ROUP C1 COMBINED SAMPLE CIMENS OF SUB-GROUPS ID C1B		
4.10	Climatic sequence		
4.10.2	Dry heat	Temperature: upper category temperature Duration: 16 h	
4.10.3	Damp heat cyclic Test Db, first cycle		
4.10.4	Cold	Temperature: lower category temperature Duration: 2 h	
4.10.6	Damp heat cyclic Test Db, remaining cycles		
4.10.6.2 Fina	Prinal measurements	Visual examination	No visible damage Legible marking
		Capacitance	$ \Delta C/C \le 3$ % of the value measured in 4.4.2 or 4.9.3
		Tangent of loss angle	Increase of $\tan \delta$: ≤ 0.003 Compared to values measured in 4.3.1 or 4.6.1
		Insulation resistance	≥ 50 % of values specified in section "Insulation Resistance" of this specification
SUB-GI	ROUP C2		
4.11	Damp heat steady state	56 days; 40 °C; 90 % to 95 % RH no load	
4.11.1	Initial measurements	Tangent of loss angle at 1 kHz	
4.11.3 Final measurements	Final measurements	Visual examination	No visible damage Legible marking
		Capacitance	$ \Delta C/C \le 3$ % of the value measured in 4.11.1
		Tangent of loss angle	Increase of tan $\delta \le 0.002$ Compared to values measured in 4.11.1
	Insulation resistance	≥ 50 % of values specified in section "Insulation Resistance" of this specification	

Revision: 27-Apr-2018 11 Document Number: 26018

www.vishay.com

Vishay Roederstein

SUB-CLAUSE NUMBER AND TEST	GROUP C INSPECTION REQUIREMENTS SUB-CLAUSE NUMBER AND TEST CONDITIONS PERFORMANCE REQUIREMENTS		
SUB-GROUP C3	CONDITIONS	TENI CHIMANGE NEGOTIEMENTO	
	Directions 2000 h		
4.12 Endurance	Duration: 2000 h 1.25 x U _{RDC} at 85 °C		
	0.875 x U _{RDC} at 100 °C		
	S.S. S. A. SRDC at 100 G		
4.12.1 Initial measurements	Capacitance		
	Tangent of loss angle at		
	C > 1 µF at 1 kHz		
	C ≤ 1 µF at 10 kHz		
4.10 F. Final mass: warmart-	Visual examination	No visible demand	
4.12.5 Final measurements	Visual examination	No visible damage Legible marking	
	Capacitance	ΔC/C ≤ 5 % for C > 10 nF	
		$ \Delta C/C \le 8$ % for C ≤ 10 nF	
		Compared to values measured in 4.12.1	
	Tangent of loss angle	Increase of tan δ:	
	rangent of loss angle	≤ 0.002 C > 1 µF at 1 kHz	
		≤ 0.004 C ≤ 1 µF at 10 kHz	
		Compared to values measured in 4.12.1	
	Insulation resistance	≥ 50 % of values specified in section "Insulation Resistance" of this specification	
SUB-GROUP C4			
4.2.6 Temperature characteristics			
Initial measurements	Capacitance		
Intermediate measurements	Capacitance at lower category temperature	For -55 °C to +20 °C:	
	Capacitance at 20 °C	0 % ≤ ΔC/C ≤ 2 % or	
	Capacitance at upper category temperature	For 20 °C to 85 °C	
		$-3\% \le \Delta C/C \le 0\%$ As specified in section " Capacitance" of th	
		specification	
Final measurements	Capacitance	As specified in section "Insulation	
	Insulation resistance	Resistance" of this specification	
SUB-GROUP C4	10.000		
4.13 Charge and discharge	10 000 cycles		
	Charged to U _{RDC} Discharge resistance:		
	$R = \frac{U_R}{1.5 \times C \times (dU/dt)}$		
	1.5 x C x (dU/dt)		
4.10.1 Initial management	Conscitones		
4.13.1 Initial measurements	Capacitance Tangent of loss angle at		
	$C \le 1 \mu F$ at 10 kHz		
	C > 1 µF at 1 kHz		
4.13.3 Final measurements	Capacitance	ΔC/C ≤ 3 % compared to values measure in 4.13.1	
		111 7.10.1	
	Tangent of loss angle	Increase of tan δ:	
		≤ 0.002 C > 1 µF at 1 kHz	
		≤ 0.005 C ≤ 1 μF at 10 kHz	
		Compared to values measured in 4.13.1	
	Insulation resistance	≥ 50 % of values specified in section	
		"Insulation Resistance" of this specification	

Legal Disclaimer Notice

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Hyperlinks included in this datasheet may direct users to third-party websites. These links are provided as a convenience and for informational purposes only. Inclusion of these hyperlinks does not constitute an endorsement or an approval by Vishay of any of the products, services or opinions of the corporation, organization or individual associated with the third-party website. Vishay disclaims any and all liability and bears no responsibility for the accuracy, legality or content of the third-party website or for that of subsequent links.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.