International Rectifier

IRF3515S/LPbF

HEXFET® Power MOSFET

Applications

- Switch Mode Power Supply (SMPS)
- Uninterruptible Power Supply
- High speed power switching
- Lead-Free

Benefits

- Low Gate Charge Qg results in Simple Drive Requirement
- Improved Gate, Avalanche and dynamic dv/dt Ruggedness
- Fully Characterized Capacitance and Avalanche Voltage and Current
- Effective Coss Specified (See AN 1001)

V _{DSS}	R _{DS(on)} max	ID	
150V	0.045Ω	41A	

Absolute Maximum Ratings

	Parameter	Max.	Units
I _D @ T _C = 25°C	Continuous Drain Current, V _{GS} @ 10V	41	
I _D @ T _C = 100°C	Continuous Drain Current, V _{GS} @ 10V	29	A
I _{DM}	Pulsed Drain Current ①	164	
P _D @T _C = 25°C	Power Dissipation	200	W
	Linear Derating Factor	1.3	W/°C
V _{GS}	Gate-to-Source Voltage	± 30	V
dv/dt	Peak Diode Recovery dv/dt 3	4.3	V/ns
TJ	Operating Junction and	-55 to + 175	
T _{STG}	Storage Temperature Range		°C
	Soldering Temperature, for 10 seconds	300 (1.6mm from case)	

Applicable Off Line SMPS Topologies

• Telcom 48V input DC/DC Active Clamp Reset Forward Converter

Notes 10 through 5 are on page 10

www.irf.com

1

Static @ T_J = 25°C (unless otherwise specified)

	Parameter	Min.	Тур.	Max.	Units	Conditions
V _{(BR)DSS}	Drain-to-Source Breakdown Voltage	150	_	_	V	$V_{GS} = 0V, I_D = 250\mu A$
$\Delta V_{(BR)DSS}/\Delta T_J$	Breakdown Voltage Temp. Coefficient		0.21	_	V/°C	Reference to 25°C, I _D = 1mA
R _{DS(on)}	Static Drain-to-Source On-Resistance	-	_	0.045	Ω	V _{GS} = 10V, I _D = 25A ④
V _{GS(th)}	Gate Threshold Voltage	3.0	_	4.5	V	$V_{DS} = V_{GS}, I_{D} = 250 \mu A$
I _{DSS}	Drain-to-Source Leakage Current	\.	_	25	μА	V _{DS} = 150V, V _{GS} = 0V
		_		250	μА	V _{DS} = 120V, V _{GS} = 0V, T _J = 150°C
I _{GSS}	Gate-to-Source Forward Leakage	_	_	100	^	$V_{GS} = 30V$
	Gate-to-Source Reverse Leakage			-100	nA	V _{GS} = -30V

Dynamic @ T_J = 25°C (unless otherwise specified)

	Parameter	Min.	Тур.	Max.	Units	Conditions
gfs gfs	Forward Transconductance	15			S	$V_{DS} = 50V, I_{D} = 25A$
Qg	Total Gate Charge		_	107		I _D = 25A
Qgs	Gate-to-Source Charge		_	23	nC	$V_{DS} = 120V$
Q _{gd}	Gate-to-Drain ("Miller") Charge		_	65		V _{GS} = 10V, See Fig. 6 and 13 @
t _{d(on)}	Turn-On Delay Time		17	_		$V_{DD} = 75V$
tr	Rise Time		120	_	ns	$I_D = 25A$
t _{d(off)}	Turn-Off Delay Time	-	34	_	113	$R_G = 2.5\Omega$
tf	Fall Time		63	_		$R_D = 3.0\Omega$, See Fig. 10 @
Ciss	Input Capacitance	_	2260	_		$V_{GS} = 0V$
Coss	Output Capacitance	_	530	_		$V_{DS} = 25V$
Crss	Reverse Transfer Capacitance	_	170	_	pF	f = 1.0MHz, See Fig. 5
Coss	Output Capacitance	_	3330			$V_{GS} = 0V$, $V_{DS} = 1.0V$, $f = 1.0MHz$
Coss	Output Capacitance		230	_		$V_{GS} = 0V$, $V_{DS} = 120V$, $f = 1.0MHz$
Coss eff.	Effective Output Capacitance		280	_	1 1	V _{GS} = 0V, V _{DS} = 0V to 120V ⑤

Avalanche Characteristics

	Parameter	Тур.	Max.	Units
E _{AS}	Single Pulse Avalanche Energy®	120	670	mJ
I _{AR}	Avalanche Current①		25	A
E _{AR}	Repetitive Avalanche Energy①		20	mJ

Thermal Resistance

	Parameter	Тур.	Max.	Units
R _{θJC}	Junction-to-Case	-	0.75	°C/W
$R_{\theta JA}$	Junction-to-Ambient (PCB Mounted, steady-state)*	_	40	

Diode Characteristics

	Parameter	Min.	Тур.	Max.	Units	Conditions
Is	Continuous Source Current (Body Diode)		_	41	^	MOSFET symbol showing the
I _{SM}	Pulsed Source Current (Body Diode) ①		_	164	^	integral reverse p-n junction diode.
V _{SD}	Diode Forward Voltage			1.3	V	T _J = 25°C, I _S = 25A, V _{GS} = 0V ④
t _{rr}	Reverse Recovery Time		200	300	ns	T _J = 25°C, I _F = 25A
Qrr	Reverse RecoveryCharge	-	1.6	2.4	μC	di/dt = 100A/µs ④
ton	Forward Turn-On Time	Intrinsic turn-on time is negligible (turn-on is dominated by L _S +L _D)				

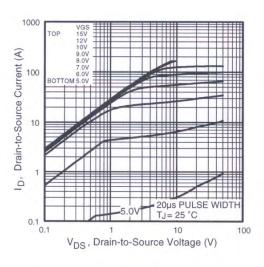


Fig 1. Typical Output Characteristics

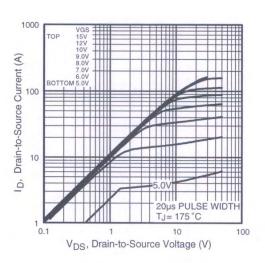


Fig 2. Typical Output Characteristics

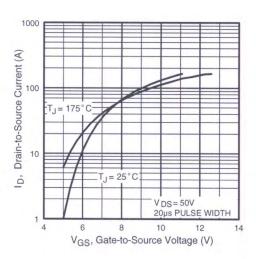


Fig 3. Typical Transfer Characteristics

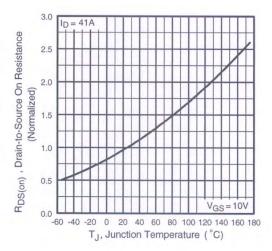
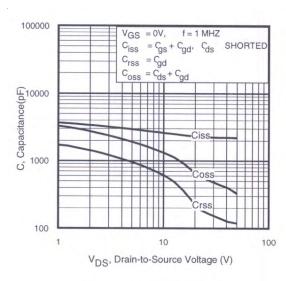



Fig 4. Normalized On-Resistance Vs. Temperature

Fig 5. Typical Capacitance Vs. Drain-to-Source Voltage

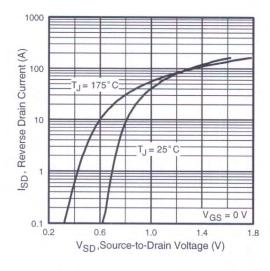


Fig 7. Typical Source-Drain Diode Forward Voltage

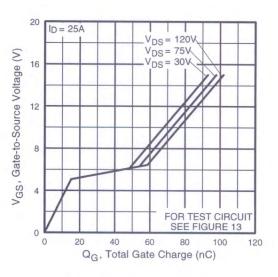


Fig 6. Typical Gate Charge Vs. Gate-to-Source Voltage

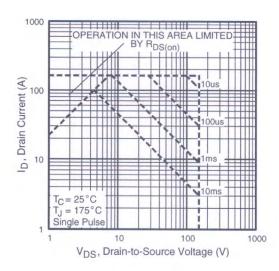


Fig 8. Maximum Safe Operating Area

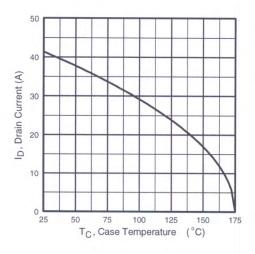


Fig 9. Maximum Drain Current Vs. Case Temperature

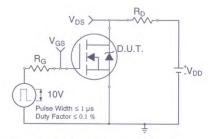


Fig 10a. Switching Time Test Circuit

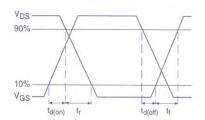


Fig 10b. Switching Time Waveforms

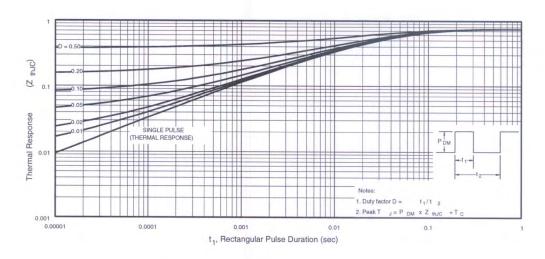


Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case

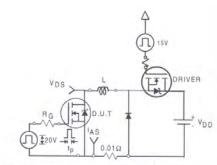


Fig 12a. Unclamped Inductive Test Circuit

Fig 12b. | Unclamped Inductive Waveforms

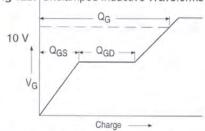


Fig 13a. Basic Gate Charge Waveform

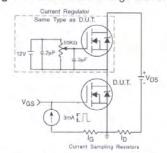


Fig 13b. Gate Charge Test Circuit

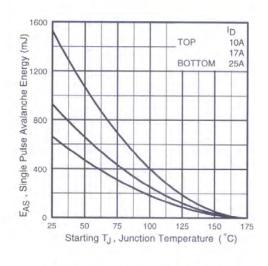
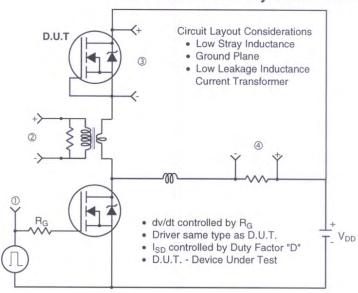
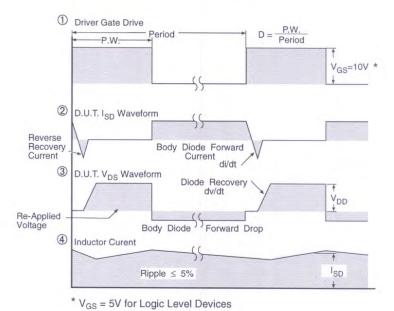
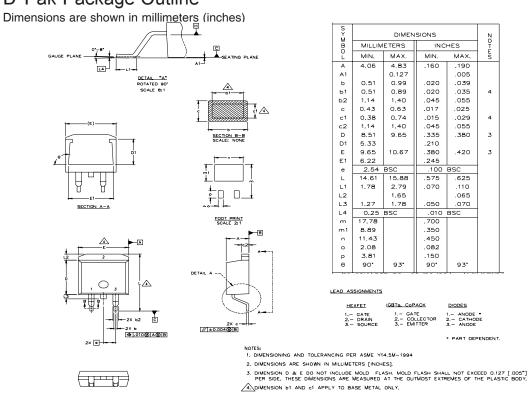
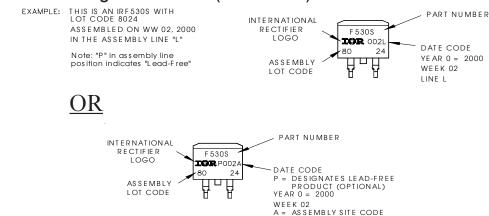
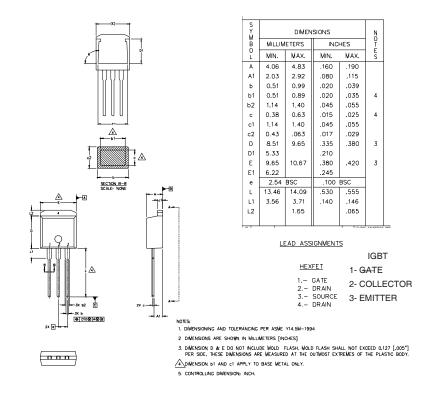



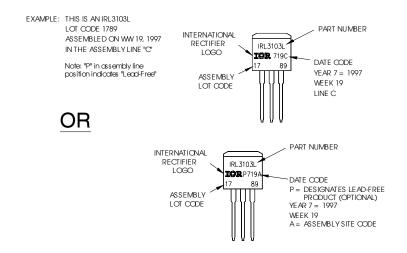
Fig 12c. Maximum Avalanche Energy Vs. Drain Current

Peak Diode Recovery dv/dt Test Circuit

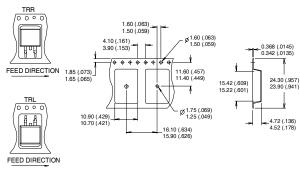



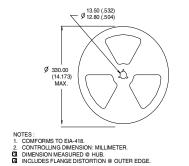

Fig 14. For N-Channel HEXFET® Power MOSFETS

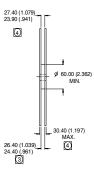

D²Pak Package Outline


D²Pak Part Marking Information (Lead-Free)

TO-262 Package Outline




TO-262 Part Marking Information



International TOR Rectifier

D²Pak Tape & Reel Infomation

Notes:

- ① Repetitive rating; pulse width limited by max. junction temperature. (See fig. 11)
- ② Starting $T_J = 25^{\circ}\text{C}$, L = 2.2mH $R_G = 25\Omega$, $I_{AS} = 25A$. (See Figure 12)
- ⓐ Pulse width ≤ 300 μ s; duty cycle ≤ 2%.

* When mounted on FR-4 board using minimum recommended footprint.
For recommended footprint and soldering techniques refer to application note #AN-994.

Data and specifications subject to change without notice.

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105

TAC Fax: (310) 252-7903

Visit us at www.irf.com for sales contact information.03/04

www.irf.com

10

Note: For the most current drawings please refer to the IR website at: http://www.irf.com/package/