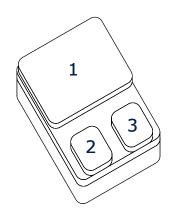


BUY25CS12J-01

HiRel RadHard Power-MOS

• Low R_{DS(on)}

• Single Event Effect (SEE) hardened


 Total Ionisation Dose (TID) hardened 100 kRad (Level R)

Hermetically sealed

N-channel

• **@esa** Space Qualified

ESCC Detail Spec. No.: 5205/026

Туре	Marking	Pin Configuration			Package	
		1	2	3	-	
BUY25CS12J-01	-	D	G	S	-	SMD05

Maximum Ratings

Parameter	Symbol	Values	Unit
Drain Source Voltage	V _{DS}	250	V
Gate Source Voltage	V _{GS}	+/- 20	V
Drain Gate Voltage	V_{DG}	250	V
Continuous Drain Current $T_C = 25 ^{\circ}C$ $T_C = 100 ^{\circ}C$	I _D	12.4 8	A
Continuous Source Current	Is	12.4	А
Drain Current Pulsed, t _p limited by T _{jmax}	I _{DM}	50	Apk
Total Power Dissipation 1)	P _{tot}	75	W
Operating and Storage Temperature	T _{op}	-55 to + 150	°C
Avalanche Energy	E _{AS}	60	mJ

Thermal Characteristics

Thermal Resistance (Junction to Case)	R _{th JC}	1.66	K/W
Soldering Temperature	T _{sol}	250	°C

Notes.:

1) For $T_S \le 25^{\circ}$ C. For $T_S > 25^{\circ}$ C derating is required.

IFAG PMM RFS D HIR 1 of 8 V8, Sep 2016

BUY25CS12J-01

Electrical Characteristics, at T_A=25°C; unless otherwise specified

Parameter	Symbol		Values		
		min.	typ.	max.	
DC Characteristics					
Breakdown Voltage Drain to Source $I_D = 0.25$ mA, $V_{GS} = 0$ V	B _{VDSS}	250	-	-	V
Gate Threshold Voltage I _D = 1.0mA, V _{DS} ≥ V _{GS}	$V_{GS(th)}$	2.0	-	4.0	V
Gate to Source Leakage Current V _{DS} = 0V, V _{GS} = +/- 20V	I _{GSS}	-	-	+/-100	nA
Drain Current V _{DS} = 200V, V _{GS} = 0V	I _{DSS}	-	-	25	μΑ
Drain Source On Resistance 1) V _{GS} = 10V, I _D = 8A	r _{DS(ON)}	-	-	0.13	Ω
Source Drain Diode, Forward Voltage $^{1), 2)}$ $V_{GS} = 0V$, $I_S = 12.4A$	V _{SD}	-	-	1.2	V
AC Characteristics					
Turn-on Delay Time $V_{DD} = 50\% \ V_{DS}, \ I_D = 8A, \ R_G = 4.7\Omega$	t _{d(ON)}	-	14	25	ns
Rise Time $V_{DD} = 50\% V_{DS}$, $I_D = 8A$, $R_G = 4.7\Omega$	t _r	-	7	25	ns
Turn-off Delay Time $V_{DD} = 50\% V_{DS}$, $I_D = 8A$, $R_G = 4.7\Omega$	t _{d(OFF)}	-	25	35	ns
Fall Time $V_{DD} = 50\% V_{DS}$, $I_D = 8A$, $R_G = 4.7\Omega$	t _f	-	5	20	ns
Reverse Recovery Time $V_{DD} < 50\% V_{DS}$, $I_D = 12.4A$	t _{rr}	-	300	400	ns
Common Source Input Capacitance $V_{DS} = 100V$, $V_{GS} = 0V$, $f = 1.0MHz$	C _{iss}	1300	-	1900	pF
Common Source Output Capacitance V _{DS} = 100V, V _{GS} = 0V, f = 1.0MHz	C _{oss}	90	-	150	pF
Common Source Reverse Transfer Capacitance V _{DS} = 100V, V _{GS} = 0V, f = 1.0MHz	C _{rss}	1	-	6	pF
Total Gate Charge $V_{DD} = 50\% V_{DS}, V_{GS} = 10V, I_D = 12.4A$	Q_G	-	25	42	nC

IFAG PMM RFS D HIR 2 of 8 V8, Sep 2016

Notes.:
1) Pulsed Measurement: Pulse Width < 300µs, Duty Cycle <2.0%.
2) Measured within 2.0 mm of case.

BUY25CS12J-01

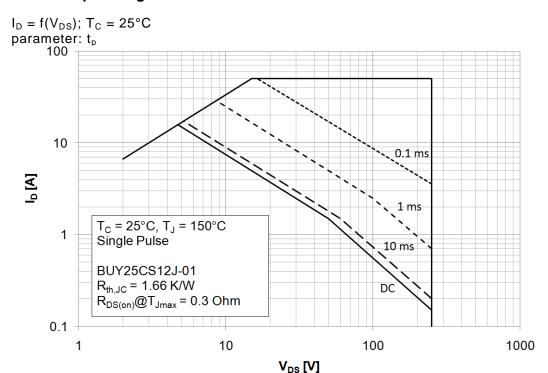
Electrical Characteristics

at T_A=125°C; unless otherwise specified

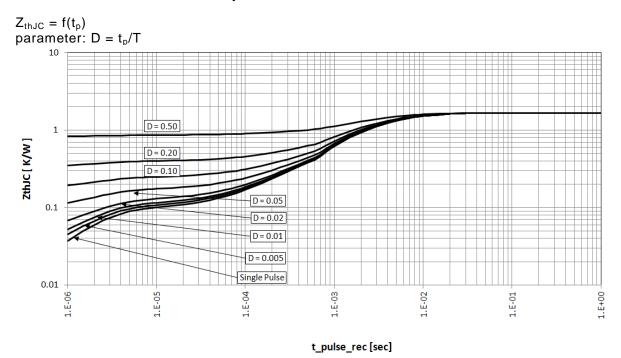
Parameter	Symbol	Val	Unit		
		min.	max.		
DC Characteristics					
Gate Threshold Voltage $I_D = 1.0 \text{mA}, V_{DS} \ge V_{GS}$	$V_{GS(th)}$	1.5	-	V	
Gate to Source Leakage Current $V_{DS} = 0V$, $V_{GS} = +/-20V$	I _{GSS}	-	+/-200	nA	
Drain Current $V_{DS} = 200V$, $V_{GS} = 0V$	I _{DSS}	-	250	μΑ	
Drain Source On Resistance 1) V _{GS} = 10V, I _D = 8A	r _{DS(ON)}	-	0.3	Ω	

Electrical Characteristics

at T_A=-55°C; unless otherwise specified

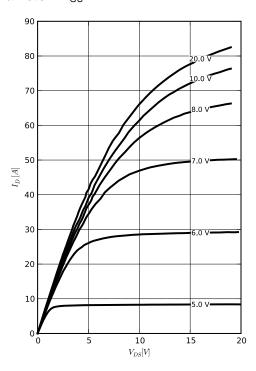

Parameter	Symbol	Values		Unit	
		min.	max.		
DC Characteristics					
Gate Threshold Voltage $I_D = 1.0 \text{mA}, V_{DS} \ge V_{GS}$	V _{GS(th)}	-	5.0	V	

Notes.:
1) Pulsed Measurement: Pulse Width < 300µs, Duty Cycle <2.0%.

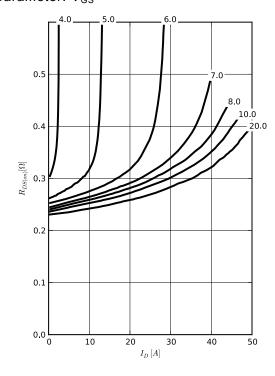


BUY25CS12J-01

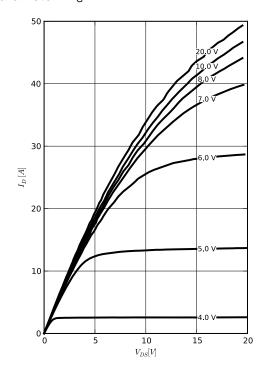
1 Safe operating area



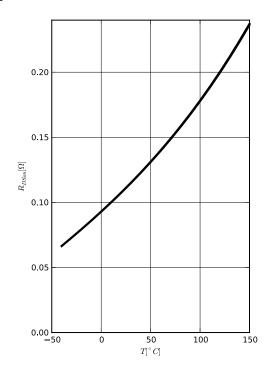
2 Max. transient thermal impedance


3 Typ. output characteristics

 $I_D = f(V_{DS}); T_j = 25 \text{ °C}$ parameter: V_{GS}


5 Typ. drain-source on-state resistance

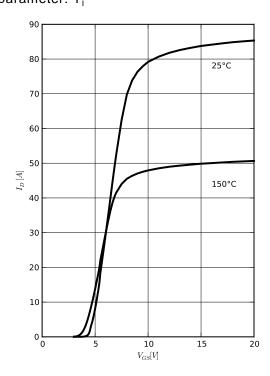
 $R_{DS(on)} = f(I_D); T_j = 150 \text{ °C}$ parameter: V_{GS}


4 Typ. output characteristics

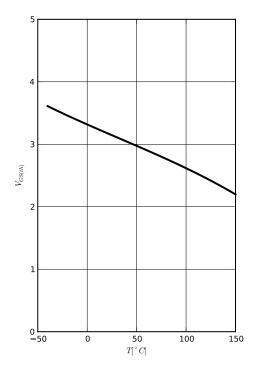
 $I_D = f(V_{DS}); T_j = 150 \text{ °C}$ parameter: V_G

6 Typ. drain-source on-state resistance

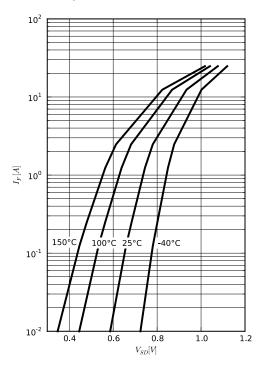
 $R_{DS(on)} = f(T_j)$ $I_D = 8A$



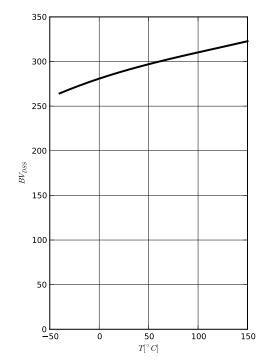
BUY25CS12J-01


7 Typ. transfer characteristics

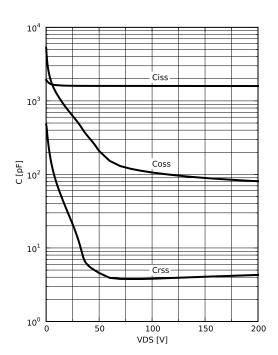
 $I_D = f(V_{GS}); |VDS| > 2 |I_D| R_{DS(on)max}$ parameter: T_i


8 Typ. gate threshold voltage

 $I_D = f(T_j)$ $I_D = 1 \text{mA}$


9 Typ. forward characteristics of reverse diode

 $I_F = f(V_{SD})$ parameter: T_i


10 Typ. drain-source breakdown voltage

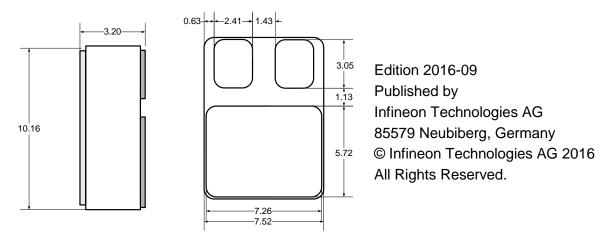
 $BV_{DSS} = f(T_j)$ $I_D = 250\mu A$

11 Typ. capacitances

$$C = f(V_{DS}); V_{GS} = 0 V; f = 1 MHz$$

12 Typ. gate charge

$$V_{GS} = f(Q_{gate}); ID = 12.4 A pulsed parameter: $V_{DD}$$$


 $\begin{array}{c} {\bf 15} \\ {Q_G\left[{nC} \right]} \end{array}$

25

10

BUY25CS12J-01

SMD05 Package

Dimensions are typical [mm]

Attention please!

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie"). With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of a third party.

Information

For further information on technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies Office (www.infineon.com).

Warnings

Due to technical requirements components may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies Office.

Infineon Technologies Components may only be used in life-support devices or systems with the expressed written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device or system.

Life support devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.