
IR IGBT IRGB4620DPbF IRGIB4620DPbF IRGP4620D(-E)PbF IRGS4620DPbF

Insulated Gate Bipolar Transistor with Ultrafast Soft Recovery Diode

$$\begin{split} V_{CES} &= 600V\\ I_{C} &= 20A, \ T_{C} = 100^{\circ}C\\ t_{SC} &\geq 5 \mu s, \ T_{J(max)} = 175^{\circ}C\\ V_{CE(ON)} \ typ. = 1.55V \ @ \ Ic = 12A \end{split}$$

Applications

- Industrial Motor Drive
- Inverters
- UPS
- Welding

Features -	→ Benefits
	High efficiency in a wide range of applications and switching
Low V _{CE(ON)} and switching losses	frequencies
Square RBSOA and maximum junction temperature 175°C	Improved reliability due to rugged hard switching
Square RBSOA and maximum junction temperature 175 C	performance and high power capability
Positive V _{CE (ON)} temperature coefficient	Excellent current sharing in parallel operation
5µs Short Circuit SOA	Enables short circuit protection scheme
Lead-Free, RoHS Compliant	Environmentally friendly

Base part number	Package Type	Standard Pack		Orderable Part Number
		Form	Quantity	
IRGB4620DPbF	TO-220AB	Tube	50	IRGB4620DPbF
IRGIB4620DPbF	TO-220AB Full-Pak	Tube	50	IRGIB4620DPbF
IRGP4620DPbF	TO-247AC	Tube	25	IRGP4620DPbF
IRGP4620D-EPbF	TO-247AD	Tube	25	IRGP4620D-EPbF
		Tube	50	IRGS4620DPbF
IRGS4620DPbF	D ² Pak	Tape and Reel Right	800	IRGS4620DTRRPbF
		Tape and Reel Left	800	IRGS4620DTRLPbF

Absolute Maximum Ratings

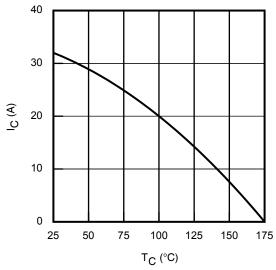
	Parameter	Max.	Units
V _{CES}	Collector-to-Emitter Voltage	600	V
I _C @ T _C = 25°C	Continuous Collector Current [®]	32	
I _C @ T _C = 100°C	Continuous Collector Current [®]	20	Α
I _{CM}	Pulse Collector Current, V _{GE} = 15V ④	36	A
I _{LM}	Clamped Inductive Load Current, V _{GE} = 20V ⑦	48	
I _F @ T _C = 25°C	Diode Continuous Forward Current®	16	
I _F @ T _C = 100°C	Diode Continuous Forward Current®	10	
I _{FM}	Diode Maximum Forward Current ④	48	
V _{GE}	Continuous Gate-to-Emitter Voltage	±20	V
	Transient Gate to Emitter Voltage	±30	
P _D @ T _C = 25°C	Maximum Power Dissipation	140	W
P _D @ T _C = 100°C	Maximum Power Dissipation	70	vv
TJ	Operating Junction and	-40 to +175	
T _{STG}	Storage Temperature Range		
	Soldering Temperature, for 10 sec. (1.6mm from case)	300	C
	Mounting Torque, 6-32 or M3 Screw (TO-220, TO-247)	10 lbf∙in (1.1 N·m)	

Thermal Resistance

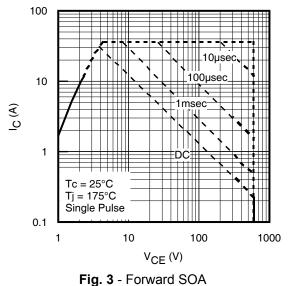
	Parameter	Min.	Тур.	Max.	Units
	Thermal Resistance Junction-to-Case (D ² Pak, TO-220)			1.07	
R _{θJC} (IGBT)②	Thermal Resistance Junction-to-Case (TO-220 Full-Pak)			3.75	
	Thermal Resistance Junction-to-Case (TO-247)			1.12	
	Thermal Resistance Junction-to-Case (D ² Pak, TO-220)			3.66	
R _{θJC} (Diode)②	Thermal Resistance Junction-to-Case (TO-220 Full-Pak)			6.22	
	Thermal Resistance Junction-to-Case (TO-247)			3.71	
R _{θCS}	Thermal Resistance, Case-to-Sink (flat, greased surface-TO-220, D ² Pak, TO-220 Full-Pak)		0.50		°C/W
	Thermal Resistance Case-to-Sink (TO-247)		0.24		
$R_{ extsf{ heta}JA}$	Thermal Resistance, Junction-to-Ambient (PCB Mount - D ² Pak) ©			40	
	Thermal Resistance, Junction-to-Ambient (Socket Mount –TO-247)			40	
	Thermal Resistance, Junction-to-Ambient (Socket Mount –TO-220)			62	
	Thermal Resistance, Junction-to-Ambient (Socket Mount –TO-220 Full-Pak)			65	

Electrical Characteristics @ T_J = 25°C (unless otherwise specified)

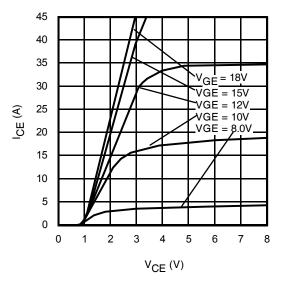
	Parameter	Min.	Тур.	Max.	Units	Conditions
V _{(BR)CES}	Collector-to-Emitter Breakdown Voltage	600			V	V _{GE} = 0V, I _C = 100µA
$\Delta V_{(BR)CES} / \Delta T_J$	Temperature Coeff. of Breakdown Voltage	—	0.40	—	V/°C	V _{GE} = 0V, I _C = 1mA (25°C-175°C)
		_	1.55	1.85		I _C = 12A, V _{GE} = 15V, T _J = 25°C
V _{CE(on)}	Collector-to-Emitter Saturation Voltage	_	1.90		V	I _C = 12A, V _{GE} = 15V, T _J = 150°C
		_	1.97	—		I _C = 12A, V _{GE} = 15V, T _J = 175°C
V _{GE(th)}	Gate Threshold Voltage	4.0	—	6.5	V	V _{CE} = V _{GE} , I _C = 350μA
$\Delta V_{GE(th)} / \Delta T_J$	Threshold Voltage Temp. Coefficient	_	-18	—	mV/°C	V _{CE} = V _{GE} , I _C = 1.0mA (25°C-175°C)
gfe	Forward Transconductance	_	7.7	—	S	V _{CE} = 50V, I _C = 12A, PW = 80µs
	Collector to Emitter Lookage Current	_	2.0	—	μA	V _{GE} = 0V, V _{CE} = 600V
I _{CES}	Collector-to-Emitter Leakage Current	_	475	—		V _{GE} = 0V, V _{CE} = 600V, T _J = 175°C
I _{GES}	Gate-to-Emitter Leakage Current	_	—	±100	nA	$V_{GE} = \pm 20V$
	Diada Farward Valtaga Dran		2.1	3.1	V	I _F = 12A
V _{FM}	Diode Forward Voltage Drop		1.6			I _F = 12A, T _J = 175°C

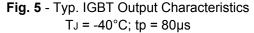

j	Characteristics @ T _J = 25°C (unless otherwite Parameter	Min.	Тур.	Max	Units	Conditions
Q _g	Total Gate Charge		25		01110	$I_{\rm C} = 12A$
Q _{ge}	Gate-to-Emitter Charge		7.0		nC	$V_{GF} = 15V$
Q _{gc}	Gate-to-Collector Charge		11			$V_{CC} = 400V$
E _{on}	Turn-On Switching Loss		75			
E _{off}	Turn-Off Switching Loss		225		μJ	I _C = 12A, V _{CC} = 400V, V _{GE} =15V
	Total Switching Loss		300		μυ	$R_{G} = 22\Omega, L = 200\mu H, L_{S} = 150 n H,$
E _{total}	Turn-On delay time		31			T ₁ = 25°C
t _{d(on)}	Rise time		17		-	
<u>ur</u> t	Turn-Off delay time		83		ns	Energy losses include tail & diode
t _{d(off)} t	Fall time		24			reverse recovery S
t _f E _{on}	Turn-On Switching Loss		185			
	Turn-Off Switching Loss		355		μJ	I _C = 12A, V _{CC} = 400V, V _{GE} =15V
E _{off}	~	<u> </u>			μυ	$R_{G} = 22\Omega, L = 200\mu H, L_{S} = 150 n H$
E _{total}	Total Switching Loss	—	540			$T_1 = 175^{\circ}C$
t _{d(on)} ▲	Turn-On delay time	—	30		-	
ι,	Rise time		18		ns	Energy losses include tail & diode
t _{d(off)}	Turn-Off delay time		102	—		reverse recovery S
	Fall time		41			
C _{ies}	Input Capacitance		765		_	$V_{GE} = 0V$
C _{oes}	Output Capacitance		52		pF	$V_{\rm CC} = 30V$
C _{res}	Reverse Transfer Capacitance		23	—		f = 1.0MHz
						T _J = 175°C, I _C = 48A
RBSOA	Reverse Bias Safe Operating Area	FL	JLL SQU	ARE		V _{CC} = 480V, Vp ≤ 600V
						$R_{G} = 22\Omega, V_{GE} = +20V \text{ to } 0V$
SCSOA	Short Circuit Safe Operating Area	5.0			μs	V _{CC} = 400V, Vp ≤ 600V
		0.0			_	$R_{G} = 22\Omega, V_{GE} = +15V \text{ to } 0V$
Erec	Reverse Recovery Energy of the Diode	—	280	—	μJ	T _J = 175°C
t _{rr}	Diode Reverse Recovery Time	—	68	—	ns	V_{CC} = 400V, I_F = 12A, V_{GE} = 15V,
l _{rr}	Peak Reverse Recovery Current	—	19	—	Α	Rg = 22Ω , L = 200μ H, L _s = 150 nH

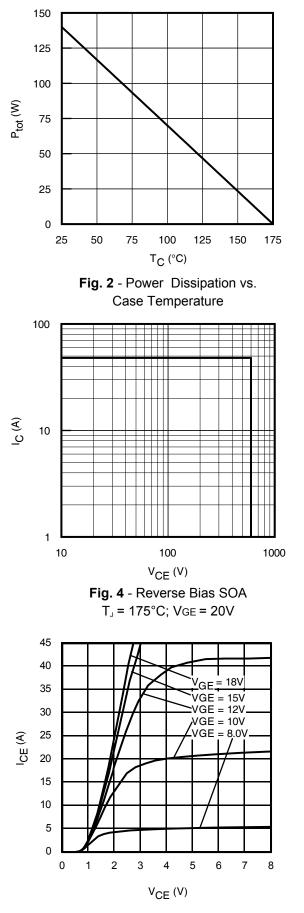
Switching Characteristics @ T₁ = 25°C (unless otherwise specified)

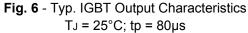

Notes:

- \odot Limited by maximum junction temperature. Not applicable for Full-Pak package:current value limited by R_{θ JC.}
- $@ \ R_{\theta}$ is measured at T_J of approximately 90°C.
- @ Refer to AN-1086 for guidelines for measuring $V_{(BR)CES}$ safely.
- ④ Pulse width limited by maximum junction temperature.
- $\ensuremath{\mathbb{S}}$ Values influenced by parasitic L and C in measurement.
- When mounted on 1" square PCB (FR-4 or G-10 Material). For recommended footprint and soldering techniques refer to application note #AN-994.<u>http://www.irf.com/technical-info/appnotes/an-994.pdf</u>
- $\oslash~V_{CC}$ = 80% (V_{CES}), V_{GE} = 20V, L = 100 $\mu H,\,R_{G}$ = 22 $\Omega.$

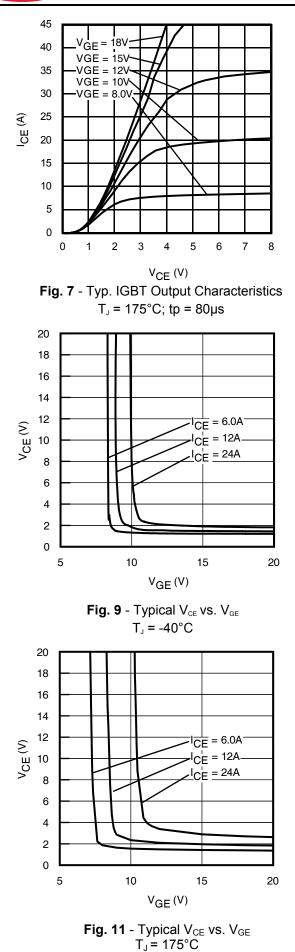


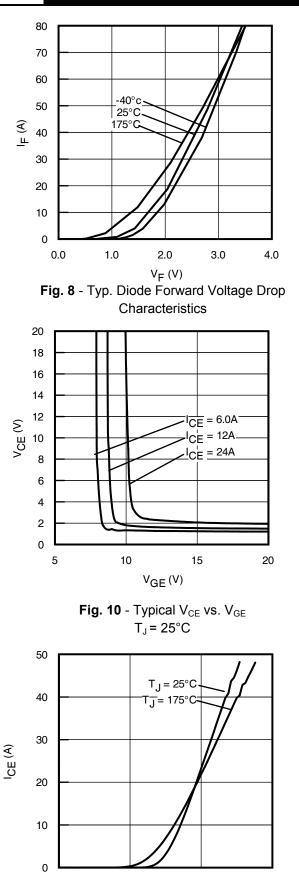






 $T_{\rm C} = 25^{\circ}{\rm C}; T_{\rm J} \le 175^{\circ}{\rm C}; V_{\rm GE} = 15{\rm V}$





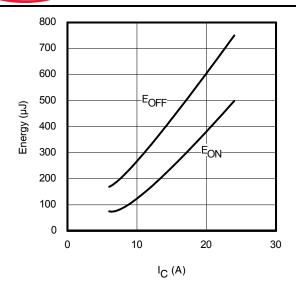


Fig. 13 - Typ. Energy Loss vs. I_c T_J = 175°C; L = 200µH; V_{CE} = 400V, R_G = 22Ω; V_{GE} = 15V

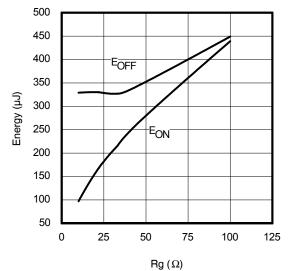
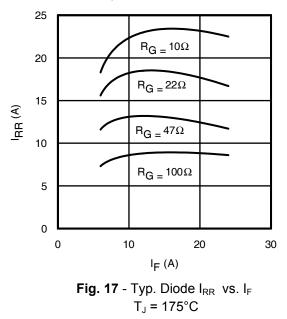



Fig. 15 - Typ. Energy Loss vs. R_G T_J = 175°C; L = 200µH; V_{CE} = 400V, I_{CE} = 12A; V_{GE} = 15V

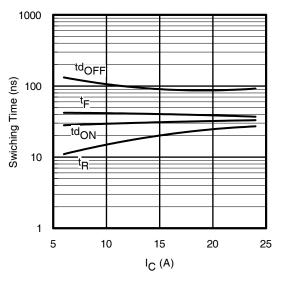
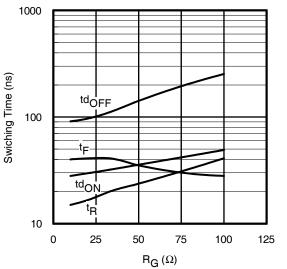


Fig. 14 - Typ. Switching Time vs. I_C T_J = 175°C; L = 200 μ H; V_{CE} = 400V, R_G = 22 Ω ; V_{GE} = 15V



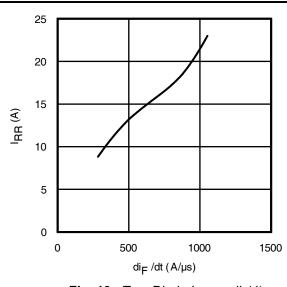
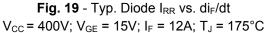



Fig. 16 - Typ. Switching Time vs. R_G T_J = 175°C; L = 200µH; V_{CE} = 400V, I_{CE} = 12A; V_{GE} = 15V

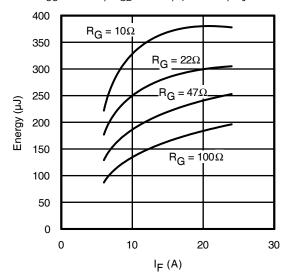
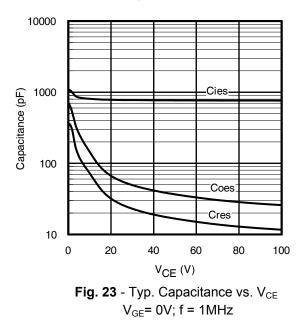
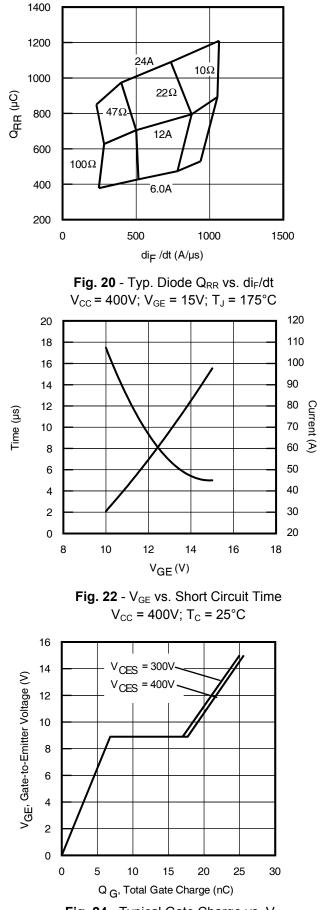
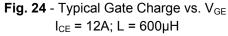





Fig. 21 - Typ. Diode E_{RR} vs. I_F T_J = 175°C

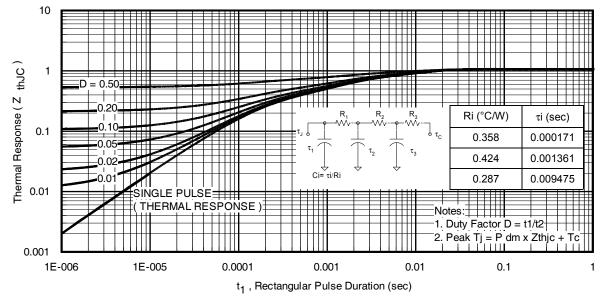


Fig. 25 - Maximum Transient Thermal Impedance, Junction-to-Case (IGBT-TO-220Pak)

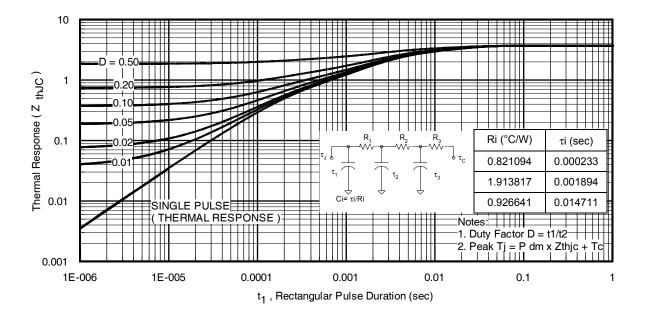


Fig. 26 - Maximum Transient Thermal Impedance, Junction-to-Case (DIODE-TO-220Pak)

8

infineon

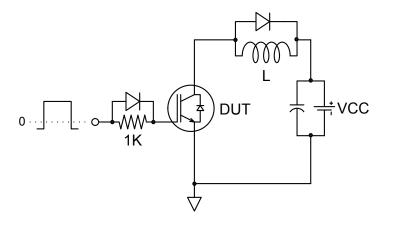


Fig.C.T.1 - Gate Charge Circuit (turn-off)

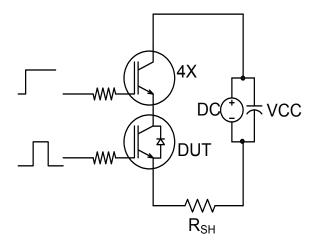
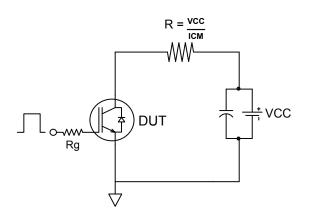



Fig.C.T.3 - S.C. SOA Circuit

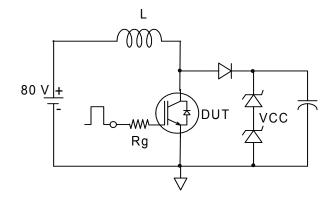


Fig.C.T.2 - RBSOA Circuit

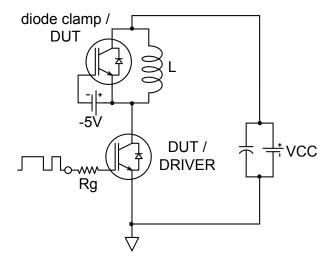


Fig.C.T.4 - Switching Loss Circuit

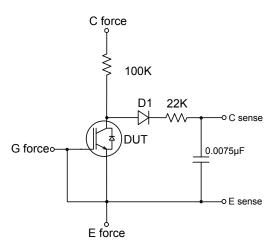


Fig.C.T.6 - BVCES Filter Circuit

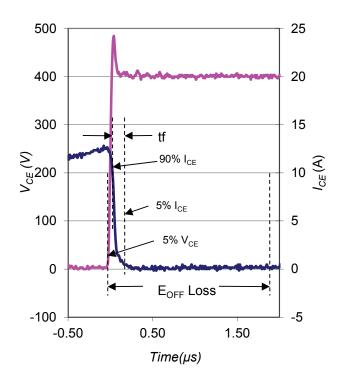
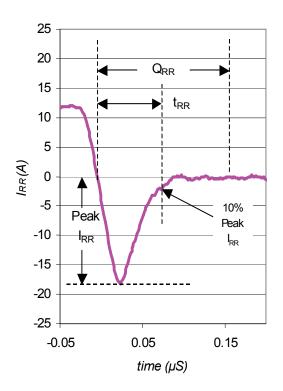
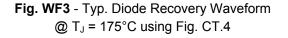
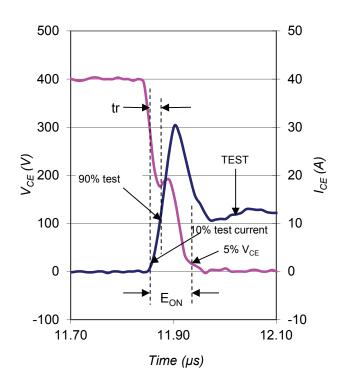
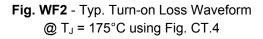
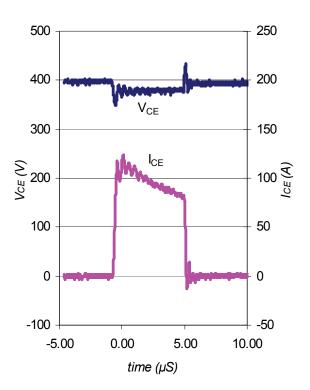
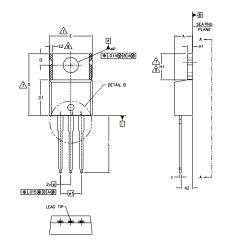
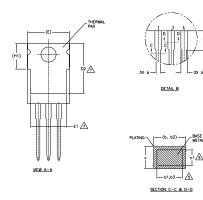






Fig. WF1 - Typ. Turn-off Loss Waveform @ T_J = 175°C using Fig. CT.4


Fig. WF4 - Typ. S.C. Waveform @ T_J = 150°C using Fig. CT.3

TO-220AB Package Outline

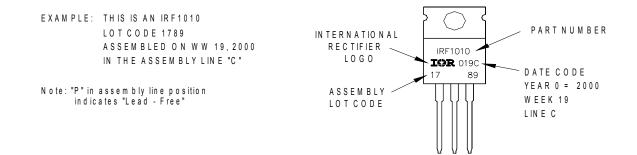
(Dimensions are shown in millimeters (inches))

18

NOTES:

- DIMENSIONING AND TOLERANCING AS PER ASME Y14.5 M- 1994. 1.-
- 2.-DIMENSIONS ARE SHOWN IN INCHES [MILLIMETERS]. 3.-
- LEAD DIMENSION AND FINISH UNCONTROLLED IN LI DIMENSION D, D1 & E D0 NOT INCLUDE MOLD FLASH. MOLD FLASH SHALL NOT EXCEED .005" (0.127) PER SIDE. THESE DIMENSIONS ARE 4.-MEASURED AT THE OUTERMOST EXTREMES OF THE PLASTIC BODY.
- <u>/5.</u>_ DIMENSION b1, b3 & c1 APPLY TO BASE METAL ONLY.
- CONTROLLING DIMENSION : INCHES. 6.-
- 7.-THERMAL PAD CONTOUR OPTIONAL WITHIN DIMENSIONS E, H1, D2 & E1
- 8.– DIMENSION E2 X H1 DEFINE A ZONE WHERE STAMPING
- AND SINGULATION IRREGULARITIES ARE ALLOWED. OUTLINE CONFORMS TO JEDEC TO-220, EXCEPT A2 (max.) AND D2 (min.) WHERE DIMENSIONS ARE DERIVED FROM THE ACTUAL PACKAGE OUTLINE. 9.-

SYMBOL	MILLIMETERS		INC	INCHES		
	Min.	MAX.	MIN.	MAX.	NOTES	
A	3.56	4.83	.140	.190		
A1	1.14	1.40	.045	.055		
A2	2.03	2.92	.080	.115		
b	0.38	1.01	.015	.040		
b1	0.38	0.97	.015	.038	5	
b2	1.14	1.78	.045	.070		
b3	1.14	1.73	.045	.068	5	
с	0.36	0.61	.014	.024		
c1	0.36	0.56	.014	.022	5	
D	14.22	16.51	.560	.650	4	
D1	8.38	9.02	.330	.355		
D2	11.68	12.88	.460	.507	7	
E	9.65	10.67	.380	.420	4,7	
E1	6.86	8.89	.270	.350	7	
E2	-	0.76	-	.030	8	
e	2.54 BSC		.100	BSC		
e1	5.08 BSC		.200	BSC		
H1	5.84	6.86	.230	.270	7,8	
L	12.70	14.73	.500	.580		
L1	3.56	4.06	.140	.160	3	
ØP	3.54	4.08	.139	.161		
Q	2.54	3.42	.100	.135		


HEXFET 1.– GATE 2.– DRAIN 3.– SOURCE IGBTs. CoPACK

LEAD ASSIGNMENTS

1.- GATE 2.- COLLECTOR 3.- EMITTER DIODES

1.- ANODE 2.- CATHODE 3.- ANODE

TO-220AB Part Marking Information

TO-220AB package is not recommended for Surface Mount Application.

Ν

0

Т

E S

5

5

5

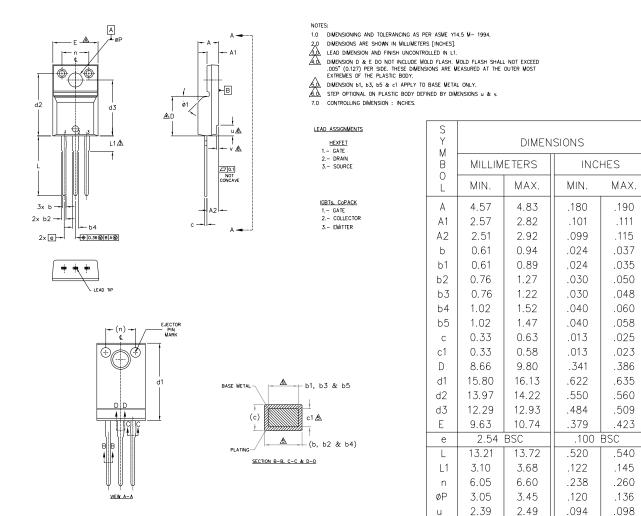
5

4

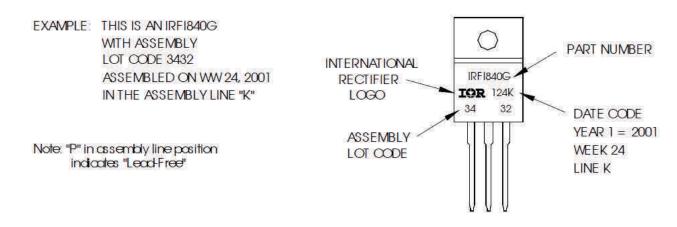
4

3

6


6

.020


45°

TO-220AB Full- Pak Package Outline

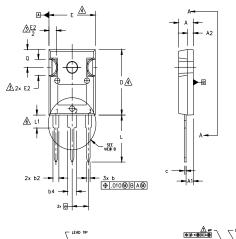
(Dimensions are shown in millimeters (inches))

TO-220AB Full- Pak Part Marking Information

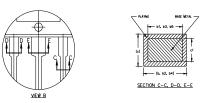
0.41

v ø1 0.51

45°

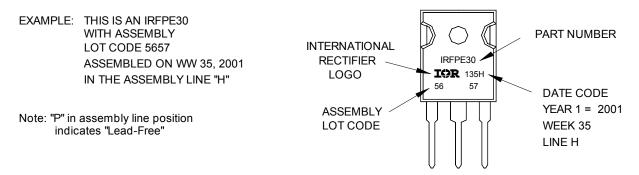

.016

TO-220AB Full-Pak package is not recommended for Surface Mount Application.


TO-247AC Package Outline

Dimensions are shown in millimeters (inches)

E1 (0).000088A00 VIEW A-A

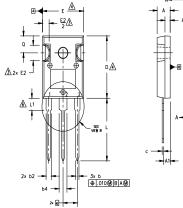

NOTES:

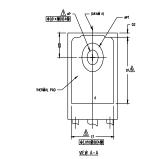
- 1. DIMENSIONING AND TOLERANCING AS PER ASME Y14.5M 1994.
- 2. DIMENSIONS ARE SHOWN IN INCHES.
- $\frac{3}{3}$ CONTOUR OF SLOT OPTIONAL.
- A. DIMENSION D & E DO NOT INCLUDE MOLD FLASH. MOLD FLASH SHALL NOT EXCEED .005" (0.127)
- PER SIDE. THESE DIMENSIONS ARE MEASURED AT THE OUTERMOST EXTREMES OF THE PLASTIC BODY.
- 5. THERMAL PAD CONTOUR OPTIONAL WITHIN DIMENSIONS D
- LEAD FINISH UNCONTROLLED IN L1.
- ØP TO HAVE A MAXIMUM DRAFT ANGLE OF 1.5 * TO THE TOP OF THE PART WITH A MAXIMUM HOLE DIAMETER OF .154 INCH.
- 8. OUTLINE CONFORMS TO JEDEC OUTLINE TO-247AC .

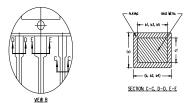
		DIMEN	DIMENSIONS			
SYMBOL	INC	HES	MILLIN	MILLIMETERS		
	MIN.	MAX.	MIN.	MAX.	NOTES	
A	.183	.209	4.65	5.31		
A1	.087	.102	2.21	2.59		
A2	.059	.098	1.50	2.49		
b	.039	.055	0.99	1.40		
b1	.039	.053	0.99	1.35		LEAD ASSIGNMENTS
b2	.065	.094	1.65	2.39		
b3	.065	.092	1.65	2.34		HEXFET
b4	.102	.135	2.59	3.43		<u></u>
b5	.102	.133	2.59	3.38		1 GATE
c	.015	.035	0.38	0.89		2 DRAIN
c1	.015	.033	0.38	0.84		3 SOURCE
D	.776	.815	19.71	20.70	4	4 DRAIN
D1	.515	-	13.08	-	5	
D2	.020	.053	0.51	1.35		
E	.602	.625	15.29	15.87	4	IGBTs, CoPACK
E1	.530	-	13.46	-		1 GATE
E2	.178	.216	4.52	5.49		2 COLLECTOR
е	.215	BSC	5.46	BSC	1	3 EMITTER
Øk	.0	10	0.	25	1	4 COLLECTOR
L	.559	.634	14.20	16.10]	i. Odlleoron
L1	.146	.169	3.71	4.29		
øP	.140	.144	3.56	3.66		DIODES
øP1	-	.291	-	7.39		
Q	.209	.224	5.31	5.69		1 ANODE/OPEN
S	.217	BSC	5.51	5.51 BSC		2 CATHODE
						3 ANODE

TO-247AC Part Marking Information

Notes: This part marking information applies to devices produced after 02/26/2001


TO-247AC package is not recommended for Surface Mount Application.





TO-247AD Package Outline

Dimensions are shown in millimeters (inches)

NOTES:

- DIMENSIONING AND TOLERANCING AS PER ASME Y14.5M 1994. 1.
- DIMENSIONS ARE SHOWN IN INCHES.
- /3.∖ CONTOUR OF SLOT OPTIONAL.
- 4. DIMENSION D & E DO NOT INCLUDE MOLD FLASH. MOLD FLASH SHALL NOT EXCEED .005" (0.127) PER SIDE. THESE DIMENSIONS ARE MEASURED AT THE OUTERMOST EXTREMES OF THE PLASTIC BODY.
- THERMAL PAD CONTOUR OPTIONAL WITHIN DIMENSIONS D1 & E1.
- LEAD FINISH UNCONTROLLED IN L1.
- OP TO HAVE A MAXIMUM DRAFT ANGLE OF 1.5 ' TO THE TOP OF THE PART WITH A MAXIMUM HOLE DIAMETER OF .154 INCH.
- 8 OUTLINE CONFORMS TO JEDEC OUTLINE TO-247AD.

DIMENSIONS					
SYMBOL	INCI	HES	MILLIM	ETERS	
	MIN.	MAX.	MIN.	MAX.	NOTES
A	.183	.209	4.65	5.31	
A1	.087	.102	2.21	2.59	
A2	.059	.098	1.50	2.49	
b	.039	.055	0.99	1.40	
b1	.039	.053	0.99	1.35	
b2	.065	.094	1.65	2.39	
b3	.065	.092	1.65	2.34	
b4	.102	.135	2.59	3.43	
b5	.102	.133	2.59	3.38	
с	.015	.035	0.38	0.89	
c1	.015	.033	0.38	0.84	
D	.776	.815	19.71	20.70	4
D1	.515	-	13.08	-	5
D2	.020	.053	0.51	1.35	
Е	.602	.625	15.29	15.87	4
E1	.530	-	13.46	-	
E2	.178	.216	4.52	5.49	
е	.215	BSC	5.46	5.46 BSC	
Øk	.0	10	0.	25	
L	.780	.827	19.57	21.00	
L1	.146	.169	3.71	4.29	
øP	.140	.144	3.56	3.66	
øP1	-	.291	-	7.39	
Q	.209	.224	5.31	5.69	
S	.217	BSC	5.51	BSC	
			1		

LEAD	ASSIGNMENTS

<u>HEXFET</u>

1.- GATE 2.- DRAIN 3.- SOURCE

4.- DRAIN

IGBTs, CoPACK

- 1.- GATE
- 2.- COLLECTOR 3.- EMITTER
- 4.- COLLECTOR

<u>DIODES</u>

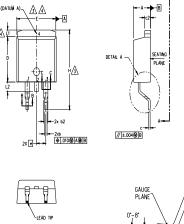
1.- ANODE/OPEN 2.- CATHODE

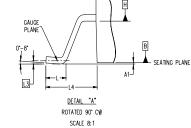
3.- ANODE

TO-247AD Part Marking Information

EXAMPLE: THIS IS AN IRGP30B120KD-E WITH ASSEMBLY PART NUMBER IN TERNATIONAL LOT CODE 5657 IRGP30B120KD-E ASSEMBLED ON WW 35,2000 RECTIFIER **IOR** 035H LOGO IN THE ASSEMBLY LINE "H" 56 57 DATE CODE YEAR 0 = 2000ASSEMBLY Note: "P" in assembly line position LOT CODE WEEK 35 indicates "Lead-Free" LINE H

TO-247AD package is not recommended for Surface Mount Application.




A

IRGB/IB/P/SP4620D/EPbF

D²-PAK (TO-263AB) Package Outline

Dimensions are shown in millimeters (inches)

PLATING

di 🔬

᠕

-b1. b3

-(b. b2)-

SECTION B-B & C-C SCALE: NONE -base Metal

/5\

LEAD ASSIGNMENTS

2. 4.- CATHODE

DIODES

3.- ANODE

HEXFET

1.- GATE 2. 4.- DRAIN 3.- SOURCE

1.- ANODE (TWO DIE) / OPEN (ONE DIE)

IGBTs, CoPACK

1.- GATE

2, 4.- COLLECTOR 3.- EMITTER

S Y M B O L			N			
B	MILLIM	ETERS	INC	INCHES		
L	MIN.	MAX.	MIN.	MAX.	O T E S	
Α	4.06	4.83	.160	.190		
A1	0.00	0.254	.000	.010		
ь	0.51	0.99	.020	.039		
b1	0.51	0.89	.020	.035	5	
b2	1.14	1.78	.045	.070		
b3	1.14	1.73	.045	.068	5	
с	0.38	0.74	.015	.029		
c1	0.38	0.58	.015	.023	5	
c2	1.14	1.65	.045	.065		
D	8.38	9.65	.330	.380	3	
D1	6.86	-	.270		4	
Е	9.65	10.67	.380	.420	3,4	
E1	6.22	-	.245		4	
е	2.54	BSC	.100	BSC		
н	14.61	15.88	.575	.625		
L	1.78	2.79	.070	.110		
L1	-	1.65	-	.066	4	
L2	-	1.78	-	.070		
L3	0.25	0.25 BSC		BSC]	
L4	4.78	5.28	.188	.208		

6

1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M-1994

2. DIMENSIONS ARE SHOWN IN MILLIMETERS [INCHES].

→ DIMENSION D & E DO NOT INCLUDE MOLD FLASH. MOLD FLASH SHALL NOT EXCEED 0.127 [.005"] PER SIDE. THESE DIMENSIONS ARE MEASURED AT THE OUTMOST EXTREMES OF THE PLASTIC BODY AT DATUM H.

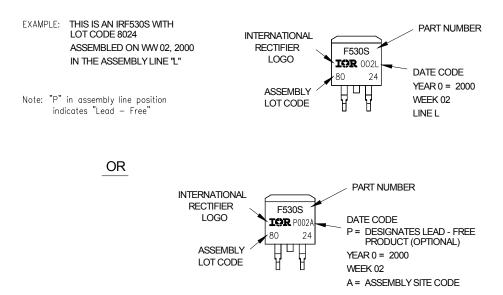
4. THERMAL PAD CONTOUR OPTIONAL WITHIN DIMENSION E, L1, D1 & E1.

5. DIMENSION 61 AND c1 APPLY TO BASE METAL ONLY.

6. DATUM A & B TO BE DETERMINED AT DATUM PLANE H.

7. CONTROLLING DIMENSION: INCH.

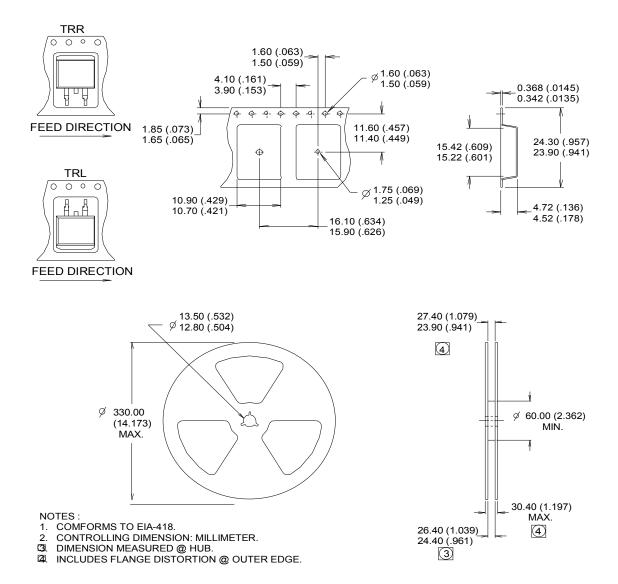
8. OUTLINE CONFORMS TO JEDEC OUTLINE TO-263AB.


D²-Pak (TO-263AB) Part Marking Information

4

ψ

VIEW A-A


ł

D²Pak Tape & Reel Information

(Dimensions are shown in millimeters (inches))

Qualification Information[†]

Qualification Level	Industrial (per JEDEC JESD47F) ^{††}		
	TO-220AB		
	TO-220AB-Full-Pak		
Moisture Sensitivity Level	TO-247AC	N/A	
	TO-247AD		
	D ² Pak MSL1		
RoHS Compliant	Yes		

- † Qualification standards can be found at International Rectifier's web site: <u>http://www.irf.com/product-info/reliability/</u>
- ++ Applicable version of JEDEC standard at the time of product release.

Published by Infineon Technologies AG 81726 München, Germany © Infineon Technologies AG 2015 All Rights Reserved.

IMPORTANT NOTICE

The information given in this document shall in <u>no event</u> be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie"). With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.

In addition, any information given in this document is subject to customer's compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer's products and any use of the product of Infineon Technologies in customer's applications.

The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application.

For further information on the product, technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies office (<u>www.infineon.com</u>).

WARNINGS

Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office.

Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, Infineon Technologies' products may <u>not</u> be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.