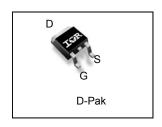


HEXFET® Power MOSFET


Application

- Optimized for UPS/Inverter Applications
- Low Voltage Power Tools

• Lead-Free, RoHS Compliant

Benefits • Fully Characterized Avalanche Voltage and Current

30 V_{DSS} $R_{DS(on)} \, max$ 2.2 $(@V_{GS} = 10V)$ $m\Omega$ $(@V_{GS} = 4.5V)$ 3.1 40 Qg (typical) nC I_{D (Silicon Limited)} 179_① Α 90A I_{D (Package Limited)}

G	D	S
Gate	Drain	Source

Base part number	Raso part number	Packago Typo	Standard Pack		Standard Pack		Orderable Part Number
	Package Type	Form	Quantity	Olderable Part Nulliber			
IRFR8314PbF	D-Pak	Tape and Reel	2000	IRFR8314TRPbF			

Absolute Maximum Rating

Symbol	Parameter	Max.	Units
V_{DS}	Drain-to-Source Voltage	30	V
V_{GS}	Gate-to-Source Voltage	± 20	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
I _D @ T _C = 25°C	Continuous Drain Current, V _{GS} @ 10V (Silicon Limited)	179①	Α
I _D @ T _C = 100°C	Continuous Drain Current, V _{GS} @ 10V (Silicon Limited)	127①	
I _D @ T _C = 25°C	Continuous Drain Current, V _{GS} @ 10V (Package Limited)	90	
I _{DM}	Pulsed Drain Current ②	357	
P _D @T _C = 25°C	Maximum Power Dissipation	125	W
P _D @T _C = 100°C	Maximum Power Dissipation	63	W
	Linear Derating Factor	0.83	W/°C
Operating Junction and -55 to + 175 Storage Temperature Range		°C	
-	Soldering Temperature, for 10 seconds (1.6mm from case)	300	

Thermal Resistance

Symbol	Parameter	Тур.	Max.	Units
$R_{\theta JC}$	Junction-to-Case ®		1.2	
$R_{ hetaJA}$	Junction-to-Ambient (PCB Mount) ⑦		50	°C/W
$R_{ heta JA}$	Junction-to-Ambient		110	

Notes ① through ⑦ are on page 9

Static @ T_J = 25°C (unless otherwise specified)

Symbol	Parameter	Min.	Тур.	Max.	Units	Conditions
BV _{DSS}	Drain-to-Source Breakdown Voltage	30			V	$V_{GS} = 0V, I_{D} = 250\mu A$
$\Delta BV_{DSS} / \Delta T_{J}$	Breakdown Voltage Temp. Coefficient		18		mV/°C	Reference to 25°C, I _D = 1mA ②
R _{DS(on)}	Static Drain-to-Source On-Resistance		1.6	2.2	mΩ	V _{GS} = 10V, I _D = 90A ④
			2.6	3.1		$V_{GS} = 4.5V, I_D = 72A \oplus$
$V_{GS(th)}$	Gate Threshold Voltage	1.2	1.7	2.2	V	$V_{DS} = V_{GS}$, $I_D = 100 \mu A$
$\Delta V_{GS(th)}/\Delta T_J$	Gate Threshold Voltage Coefficient		-7.0		mV/°C	
l	Drain-to-Source Leakage Current			1.0	μA	$V_{DS} = 24 \text{ V}, V_{GS} = 0 \text{ V}$
I _{DSS}	Diali-10-30uice Leakage Cuiteiit			150	μΛ	$V_{DS} = 24V, V_{GS} = 0V, T_{J} = 125^{\circ}C$
lass	Gate-to-Source Forward Leakage			100	nA	V _{GS} = 20V
I _{GSS}	Gate-to-Source Reverse Leakage			-100	ш	V _{GS} = -20V
gfs	Forward Transconductance	189			S	$V_{DS} = 15V, I_{D} = 72A$
Q_g	Total Gate Charge		36	54		
Q_{gs1}	Pre-Vth Gate-to-Source Charge		10			V _{DS} = 15V
Q_{gs2}	Post-Vth Gate-to-Source Charge		7.7		nC	V _{GS} = 4.5V
Q_gd	Gate-to-Drain Charge		10			I _D = 72A
Q_{godr}	Gate Charge Overdrive		8.3			
Q_{sw}	Switch Charge (Qgs2 + Qgd)		20			
R_G	Gate Resistance		2.0		Ω	
$t_{d(on)}$	Turn-On Delay Time		19			V _{DD} = 15V
t _r	Rise Time		98		ns	I _D = 72A
$t_{d(off)}$	Turn-Off Delay Time		28			$R_G = 1.8\Omega$
t _f	Fall Time		30		1	V _{GS} = 4.5V ④
C _{iss}	Input Capacitance		4945			V _{GS} = 0V
Coss	Output Capacitance		908		pF	V _{DS} = 15V
C _{rss}	Reverse Transfer Capacitance		493			f = 1.0MHz

Avalanche Characteristics

A TANAMIONIO ON AN AUGUSTONIO				
E _{AS (Thermally limited)}	Single Pulse Avalanche Energy ③	180	m l	
E _{AS (tested)}	Single Pulse Avalanche Energy Tested Value ®	279	mJ	
IΔ	Avalanche Current	72	A	

Diode Characteristics

Symbol	Parameter	Min.	Тур.	Max.	Units	Conditions
	Continuous Source Current			179①		MOSFET symbol
IS	(Body Diode) ②			1790	_	showing the
	Pulsed Source Current			357	Α	integral reverse
ISM	(Body Diode) ②			337		p-n junction diode.
V_{SD}	Diode Forward Voltage			1.0	V	$T_J = 25^{\circ}C, I_S = 72A, V_{GS} = 0V $ ④
t _{rr}	Reverse Recovery Time		31	47	ns	$T_J = 25^{\circ}C I_F = 72A , V_{DD} = 15V$
Q_{rr}	Reverse Recovery Charge		87	130	nC	di/dt = 360A/µs ④

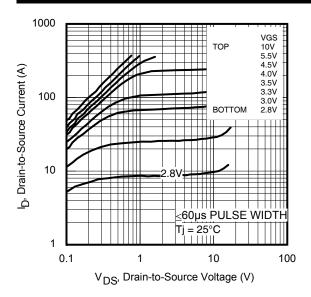


Fig 1. Typical Output Characteristics

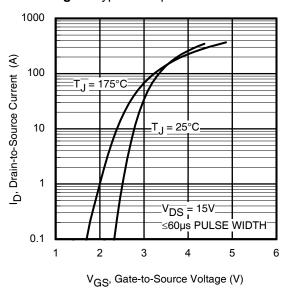


Fig 3. Typical Transfer Characteristics

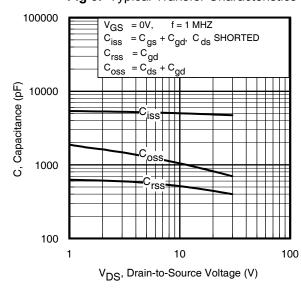


Fig 5. Typical Capacitance vs. Drain-to-Source Voltage

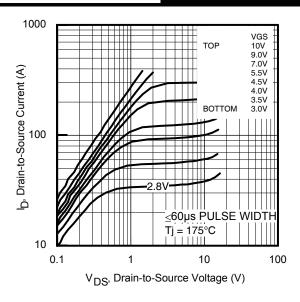


Fig 2. Typical Output Characteristics

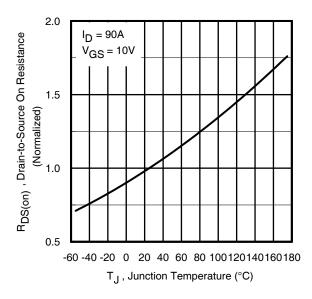


Fig 4. Normalized On-Resistance vs. Temperature

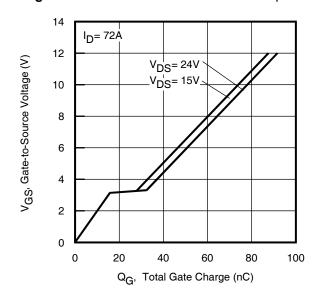


Fig 6. Typical Gate Charge vs. Gate-to-Source Voltage

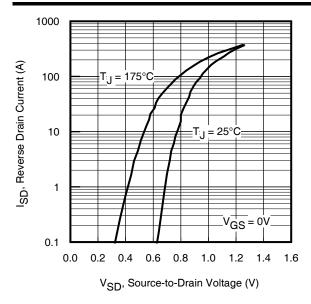


Fig 7. Typical Source-Drain Diode Forward Voltage

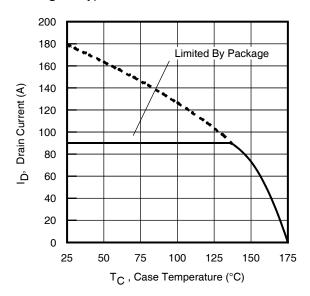


Fig 9. Maximum Drain Current vs. Case Temperature

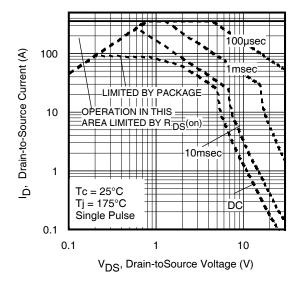


Fig 8. Maximum Safe Operating Area

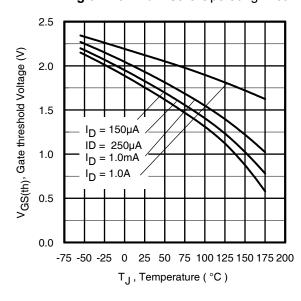


Fig 10. Threshold Voltage vs. Temperature

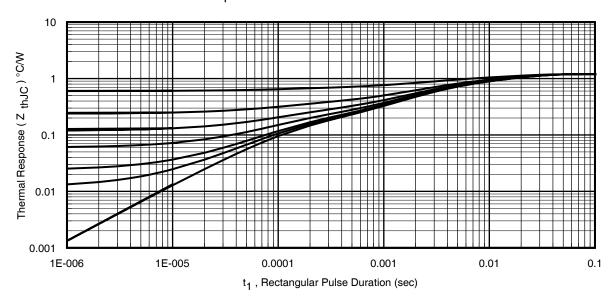
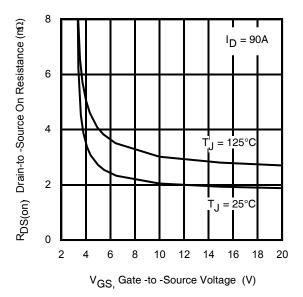



Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case

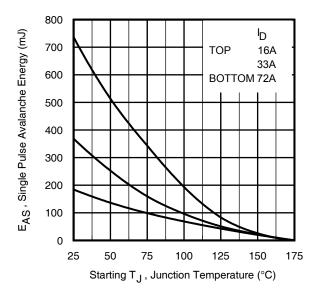


Fig 12. Typical On-Resistance vs. Gate Voltage

Fig 13. Maximum Avalanche Energy vs. Drain Current

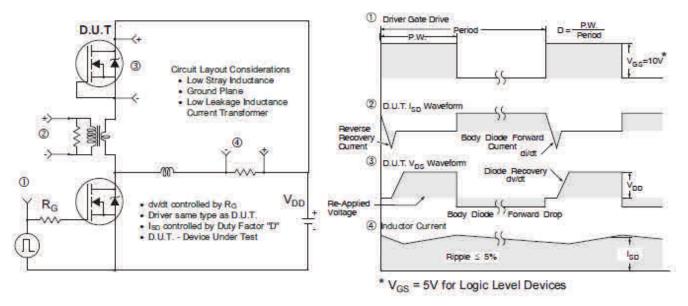


Fig 14. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET® Power MOSFETs

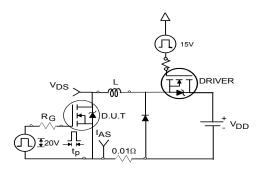


Fig 15a. Unclamped Inductive Test Circuit

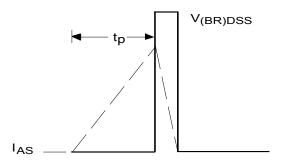


Fig 15b. Unclamped Inductive Waveforms

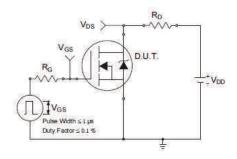


Fig 16a. Switching Time Test Circuit

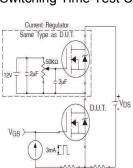


Fig 17a. Gate Charge Test Circuit

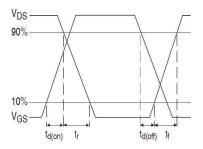
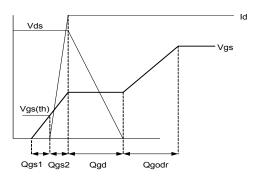
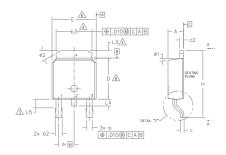
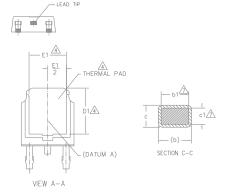
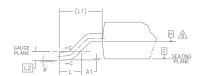


Fig 16b. Switching Time Waveforms


Fig 17b. Gate Charge Waveform

D-Pak (TO-252AA) Package Outline Dimensions are shown in millimeters (inches)

- 1.- DIMENSIONING AND TOLERANCING PER ASME Y14.5M-1994
- 2.- DIMENSION ARE SHOWN IN INCHES [MILLIMETERS].
- 3- LEAD DIMENSION UNCONTROLLED IN L5.
- A- DIMENSION D1, E1, L3 & 63 ESTABLISH A MINIMUM MOUNTING SURFACE FOR THERMAL PAD.
- 5.— SECTION C-C DIMENSIONS APPLY TO THE FLAT SECTION OF THE LEAD BETWEEN .005 AND 0.10
 [0.13 AND 0.25] FROM THE LEAD TIP.

 DIMENSION D & E DO NOT INCLUDE MOLD FLASH. MOLD FLASH SHALL NOT EXCEED .006 [0.15] PER
- SIDE. THESE DIMENSIONS ARE MEASURED AT THE OUTMOST EXTREMES OF THE PLASTIC BODY

 DIMENSION 61 & c1 APPLIED TO BASE METAL ONLY.
- 8- DATUM A & B TO BE DETERMINED AT DATUM PLANE H
- 9.- OUTLINE CONFORMS TO JEDEC OUTLINE TO-252AA

S Y M		DIMEN	SIONS		N O T
В	MILLIM	ETERS	INC	INCHES	
0 L	MIN.	MAX.	MIN.	MAX.	Ė
Α	2.18	2.39	.086	.094	
A1	-	0.13	-	.005	
ь	0.64	0.89	.025	.035	
b1	0.64	0.79	.025	.031	7
b2	0.76	1,14	.030	.045	
b3	4.95	5.46	.195	.215	4
С	0.46	0.61	.018	.024	
c1	0.41	0.56	.016	.022	7
c2	0.46	0.89	.018	.035	
D	5.97	6.22	.235	.245	6
D1	5.21	-	.205	-	4
Ε	6.35	6.73	.250	.265	6
E1	4.32	-	.170	-	4
е	2.29	BSC	.090	BSC	
Н	9.40	10.41	.370	.410	
L	1.40	1.78	.055	.070	
L1	2.74	BSC	.108	REF.	
L2	0.51	BSC	.020	BSC	
L3	0.89	1.27	.035	.050	4
L4	-	1.02	-	.040	
L5	1,14	1.52	.045	.060	3
Ø	0,	10*	0.	10*	
ø1	0,	15°	0*	15*	
ø2	25°	35*	25°	35*	
	-		_		

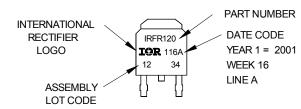
LEAD ASSIGNMENTS

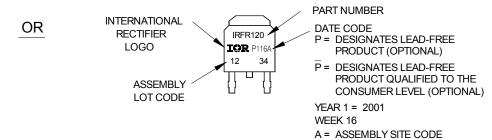
HEXFET

- 2.- DRAIN
- 3.- SOURCE 4.- DRAIN

IGBT & CoPAK

- 1.- GATE 2.- COLLECTOR
- 3.- EMITTER COLLECTOR

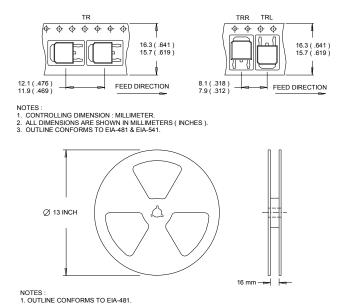

D-Pak (TO-252AA) Part Marking Information


EXAMPLE: THIS IS AN IRFR120 WITH ASSEMBLY LOT CODE 1234

> ASSEMBLED ON WW 16, 2001 IN THE ASSEMBLY LINE "A"

Note: "P" in assembly line position indicates "Lead-Free"

> "P" in assembly line position indicates "Lead-Free" qualification to the consumer-level



Note: For the most current drawing please refer to IR website at http://www.irf.com/package/

D-Pak (TO-252AA) Tape & Reel Information Dimensions are shown in millimeters (inches)

Note: For the most current drawing please refer to IR website at http://www.irf.com/package/

www.irf.com

Qualification Information[†]

Qualification I avai	Industrial		
Qualification Level		(per JEDEC JESD47F) ††	
Moisture Sensitivity Level	D-Pak MSL1		
RoHS Compliant	Yes		

- † Qualification standards can be found at International Rectifier's web site: http://www.irf.com/product-info/reliability/
- †† Applicable version of JEDEC standard at the time of product release.

Notes:

- ① Calculated continuous current based on maximum allowable junction temperature. Bond wire current limit is 90A by source bonding technology. Note that current limitations arising from heating of the device leads may occur with some lead mounting arrangements. (Refer to AN-1140)
- ② Repetitive rating; pulse width limited by max. junction temperature.
- 3 Limited by T_{Jmax} , starting $T_J = 25$ °C, L = 0.07mH, $R_G = 50\Omega$, $I_{AS} = 72$ A, $V_{GS} = 10$ V.
- 4 Pulse width $\leq 400 \mu s$; duty cycle $\leq 2\%$.
- © R_{θ} is measured at T_{J} approximately 90°C.
- ® This value determined from sample failure population, starting T_J =25°C, L=0.07mH, R_G = 50Ω, I_{AS} = 72A, V_{GS} =10V.
- When mounted on 1" square PCB (FR-4 or G-10 Material). For recommended footprint and soldering techniques refer to application note #AN-994.please refer to application note to AN-994: http://www.irf.com/technical-info/appnotes/an-994.pdf

Revision History

Date	Comments
07/01/2014	The Device is active without bulk part which is removed from Table on page 1

IR WORLD HEADQUARTERS: 101N Sepulveda Blvd, El Segundo, California 90245, USA

To contact International Rectifier, please visit http://www.irf.com/whoto-call/

IMPORTANT NOTICE

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie").

With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.

In addition, any information given in this document is subject to customer's compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer's products and any use of the product of Infineon Technologies in customer's applications.

The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application.

For further information on the product, technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies office (www.infineon.com).

WARNINGS

Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office.

Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, Infineon Technologies' products may not be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.