

2A CMOS LDO REGULATOR

AP2132

Description

The AP2132 series are positive voltage regulator ICs fabricated by CMOS process. The ICs consist of a voltage reference, an error amplifier, a power transistor, a resistor network for setting output voltage, a current limit circuit for current protection, and a chip enable circuit.

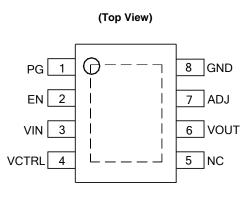
The AP2132 have features of large current, low dropout voltage, high output voltage accuracy, and low input voltage. The AP2132 provide a power good (PG) signal to indicate if the voltage level of V_{OUT} reaches 92% of its rating value. And it operates with a V_{IN} as low as 1.4V and V_{PP} voltage 5V with output voltage programmable as low as 0.6V.

The AP2132 ADJ pin is unique as it has two specific modes. Internal Mode:

The ADJ pin is grounded the internal resistors are used and the output voltages can be 1.2V, 1.5V, 1.8V, or 2.5V as ordered by a specific part number.

External Mode:

The ADJ pin is not grounded but connected to an external resistor divider. In this mode the device is truly adjustable and the internal resistors are ignored. This is true for all of the versions.


The AP2132 are available in 1.2V, 1.5V, 1.8V, 2.5V fixed output voltage versions and adjustable output voltage version. The fixed versions integrate the adjust resistors. It is also available in an adjustable version, which can set the output voltage with external resistor. If the pin of adjustable output voltage is to ground, it will switch to fixed output voltage.

The AP2132 series are available in PSOP-8 package.

Applications

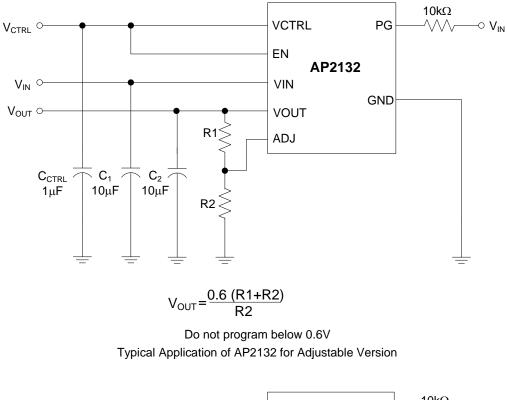
Notebook

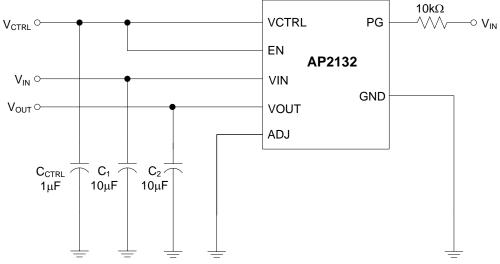
Pin Assignments

PSOP-8

Features

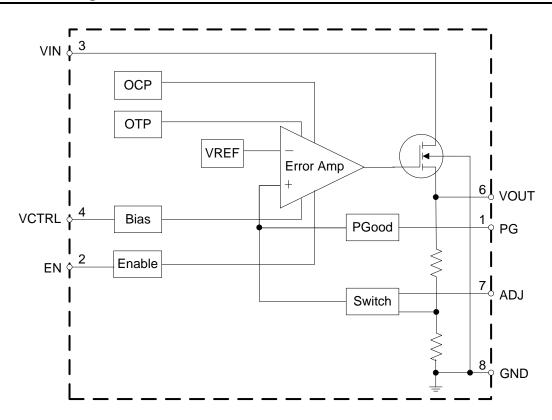
- Adjustable Output: 0.6V to 3.0V
- Low Dropout Voltage: 300mV@Iout = 2A, Vout = 1.2V
- Over Current and Over Temperature Protection
- Enable Pin
- PSOP-8 Package with Thermal Pad
- Maximum Output Current: 2A
- High Output Voltage Accuracy: 2%
- V_{OUT} Power Good Signal
- Excellent Line/Load Regulation
- Totally Lead-Free & Fully RoHS Compliant (Notes 1 & 2)
- Halogen and Antimony Free. "Green" Device (Note 3)
- For automotive applications requiring specific change control (i.e. parts qualified to AEC-Q100, PPAP capable, and manufactured in IATF 16949 certified facilities), please <u>contact us</u> or your local Diodes representative.
- <u>https://www.diodes.com/quality/product-definitions/</u>


Notes:


1. No purposely added lead. Fully EU Directive 2002/95/EC (RoHS), 2011/65/EU (RoHS 2) & 2015/863/EU (RoHS 3) compliant.

- 2. See https://www.diodes.com/quality/lead-free/ for more information about Diodes Incorporated's definitions of Halogen- and Antimony-free, "Green" and Lead-free.
- 3. Halogen- and Antimony-free "Green" products are defined as those which contain <900ppm bromine, <900ppm chlorine (<1500ppm total Br + Cl) and <1000ppm antimony compounds.

Typical Applications Circuit


Typical Application of AP2132 for Fixed Version

Pin Description

Pin Number	Pin Name	Function
1	PG	Assert high once V_{OUT} reaches 92% of its rating voltage
2	EN	Enable input
3	VIN	Input voltage
4	VCTRL	Input voltage for controlling circuit
5	NC	Not connected
6	VOUT	Regulated output voltage
7	ADJ	Internal Mode ADJ is connected to ground. The output voltage is set by internal resistors External Mode ADJ is connected to external feedback resistors. The output voltage will be V _{OUT} = 0.6 (R1+R2)/R2. Do not program below 0.6V
8	GND	Ground
Thermal Pad	GND or Open	The pad may be grounded or left open. This does not replace the need for ground on Pin 8.

Functional Block Diagram

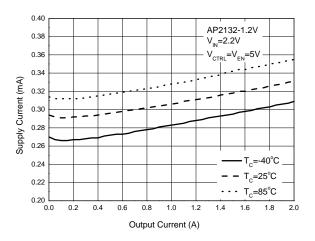
Absolute Maximum Ratings (Note 4)

Symbol	Parameter	Rating	Unit
V _{IN} Vctrl	Input Voltage Input Voltage for Controlling Circuit	6.0	V
V _{EN}	Enable Input Voltage	-0.3 to 6.0	V
I _{OUT}	Output Current	2.5	А
θ _{JA}	Thermal Resistance (No Heatsink)	130	°C/W
TJ	Operating Junction Temperature	+150	°C
T _{STG}	Storage Temperature Range -65 to +150		°C
T _{LEAD}	Lead Temperature (Soldering, 10sec)	+260	°C
_	ESD (Machine Model)	(Machine Model) 200	
_	ESD (Human Body Model)	2000	V

Note 4: Stresses greater than those listed under "*Absolute Maximum Ratings*" can cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "*Recommended Operating Conditions*" is not implied. Exposure to "*Absolute Maximum Ratings*" for extended periods can affect device reliability.

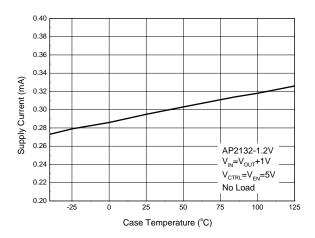
Recommended Operating Conditions

Symbol	Parameter	Min	Мах	Unit
V _{IN}	Input Voltage	1.4	5.5	V
V _{CTRL}	Input Voltage for Controlling Circuit	4.5	5.5	V
T _A	Operating Ambient Temperature Range	-40	+85	°C

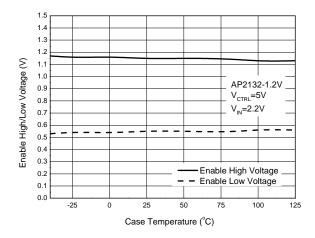


Electrical Characteristics (@V_{IN} = V_{OUT}+0.5V, V_{CTRL} = V_{EN} = 5V, T_A = +25°C, C_{IN} = C_{OUT} = 10µF, C_{CTRL} = 1µF, I_{OUT} = 10mA, **Bold** typeface applies -40°C \leq T_A \leq +85°C unless otherwise specified.)

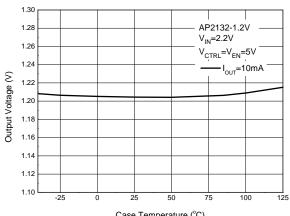
Symbol	Parameter	Conditions		Min	Тур	Max	Unit
V _{OUT}	Output Voltage	V _{IN} = V _{OUT} +0.5V, I _{OUT} =10mA		V _{ОUT} × 98%	_	V _{ОUT} × 102%	V
V _{IN}	Input Voltage	_		1.4	_	5.5	V
I _{OUT} (max)	Max. Output Current	V _{IN} – V _{OUT} = 1V, V _{OUT} =	98%xVout	2	_	_	А
V _{RLOAD}	Load Regulation	V _{IN} = V _{OUT} +0.5V, 10mA	≤ I _{OUT} ≤ 2A	_	10	_	mV
V _{RLINE}	Line Regulation	$V_{OUT} + 0.5V \le V_{IN} \le 5V, I$	_{OUT} = 10mA	_	2	_	mV
		I _{OUT} = 500mA		_	80	120	mV
V _{DROP}	Dropout Voltage	I _{OUT} = 1A	_	150	200	mV	
		I _{OUT} = 2A	_	300	450	mV	
ISUPPLY	Supply Current	V _{IN} = V _{OUT} +0.5V, I _{OUT} = 0mA		_	300		μA
ICTRLH		V _{IN} = V _{OUT} +0.5V, V _{CTRL} = V _{EN} = 5V		_	250	500	μA
ICTRLL	VCTRL Current	V _{IN} = V _{OUT} +0.5V, V _{CTRL} = 5V, V _{EN} = 0V		_	0.1	1	μA
	Power Supply Rejection Ratio	Ripple 0.5Vp-p,	f = 100Hz	_	60	_	dB
PSRR		$V_{IN} = V_{OUT} + 1V$ $f = 1kHz$		_	60	_	dB
ΔV _{OUT} V _{OUT} xΔT	Output Voltage Temperature Coefficient	I I _{OUT} = 10mA, -40°C ≤ T _A ≤ +85°C		_	±100		ppm/°C
V _{REF}	Reference Voltage	Adjust Short to V _{OUT}		0.588	0.6	0.612	V
_	Enable "High" Voltage	Enable Input Voltage "High"		1.5	_	_	V
_	Enable "Low" Voltage	Enable Input Voltage "Lo	Enable Input Voltage "Low"		_	0.4	V
OTSD	Thermal Shutdown	_		_	+165	_	°C
_	Thermal Shutdown Hysteresis	_		_	+20	_	°C
VTHPG	Vout Power Good Voltage	_		_	92	_	%
_	V _{PG} Hysteresis				7	_	%
_	Adjust Pin Threshold	_		_	200	_	mV
θ _{JC}	Thermal Resistance (Junction to Case)	PSOP-8	-	40	_	°C/W	



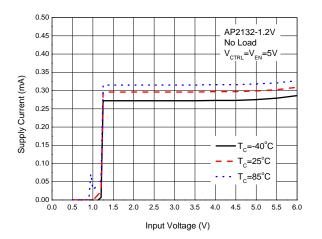
Performance Characteristics



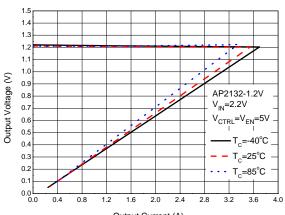
Supply Current vs. Output Current


Supply Current vs. Case Temperature

Enable High/Low Voltage vs. Case Temperature



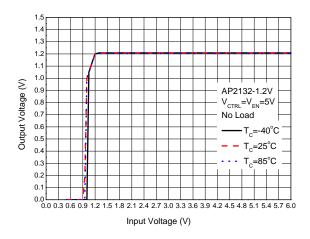
Output Voltage vs. Case Temperature



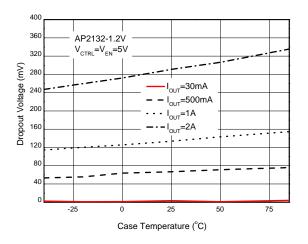
Case Temperature (°C)

Supply Current vs. Input Voltage

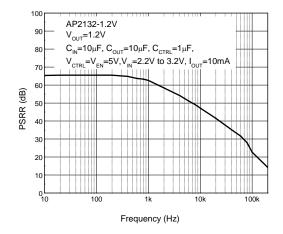
Output Voltage vs. Output Current



Output Current (A)



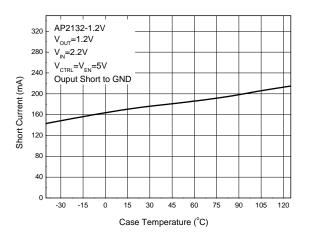
Performance Characteristics (continued)


Output Voltage vs. Input Voltage

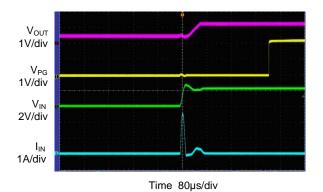
Dropout Voltage vs. Case Temperature

PSRR vs. Frequency

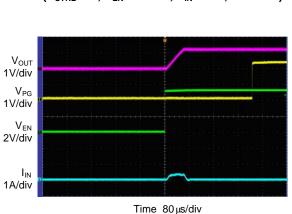
400 AP2132-1.2V 360 V_{CTRL}=V_{EN}=5V 320 280 Dropout Voltage (mV) 240 200 160 120 T_=-40°C 80 - T_=25°C 4(T_c=85°C


0.2 0.4 0.6 0.8 1.0 1.2 1.4

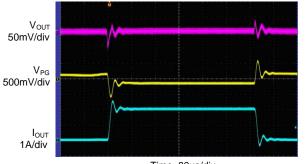
0.0


1.6 1.8

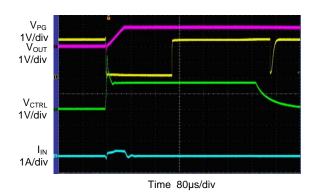
2.0



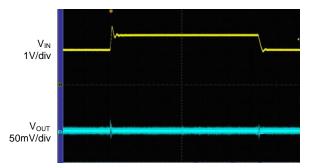
V_{IN} Start up Waveform (V_{CTRL}=V_{EN}=5V, V_{IN}=0 to 2.2V, No Load)



Performance Characteristics (continued)

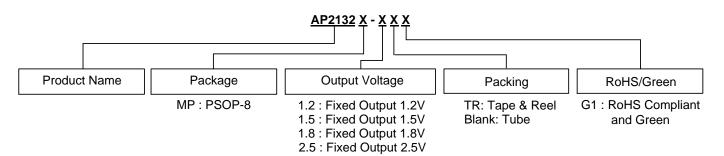

 $\label{eq:Ven} \begin{array}{l} V_{\text{EN}} \, \text{Start up Waveform} \\ (V_{\text{CTRL}}{=}5V, \, V_{\text{EN}}{=}0 \text{ to } 5V, \, V_{\text{IN}}{=}2.2V, \, \text{No Load}) \end{array}$

Load Transient (V_{CTRL}=V_{EN}=5V, V_{IN}=2.2V, I_{OUT}=0 to 2A)

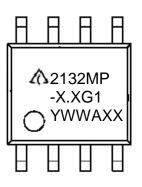


Time 80µs/div

 V_{CTRL} Start up and Shut down Waveform (V_{CTRL} =0 to 5V, V_{EN} =5V, V_{IN} =2.2V, No Load)


Line Transient (V_{CTRL}=V_{EN}=5V, C_{IN}=C_{CTRL}=1μF, C_{OUT}=10μF, V_{IN}=2.2V to 3.2V, I_{OUT}=10mA)

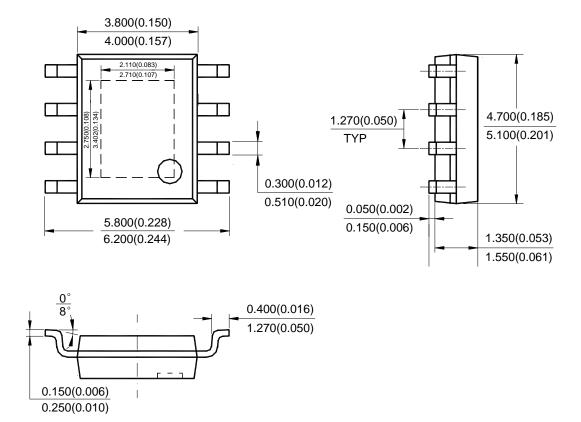
Time 80µs/div


Ordering Information

Package	Temperature Range	Version Description	Part Number	Marking ID	Packing
	-40 to +85°C	Each fixed output version integrates ADJ version	AP2132MP-1.2G1	2132MP-1.2G1	100/Tube
			AP2132MP-1.2TRG1	2132MP-1.2G1	4000/Tape & Reel
			AP2132MP-1.5G1	2132MP-1.5G1	100/Tube
			AP2132MP-1.5TRG1	2132MP-1.5G1	4000/Tape & Reel
PSOP-8			AP2132MP-1.8G1	2132MP-1.8G1	100/Tube
			AP2132MP-1.8TRG1	2132MP-1.8G1	4000/Tape & Reel
			AP2132MP-2.5G1	2132MP-2.5G1	100/Tube
			AP2132MP-2.5TRG1	2132MP-2.5G1	4000/Tape & Reel

Marking Information

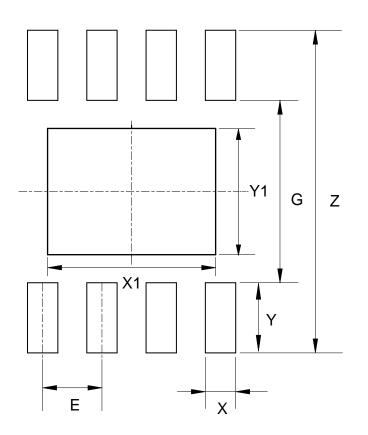
(Top View)



First and Second Lines: Logo and Marking ID (See Ordering Information) Third Line: Date Code Y: Year WW: Work Week of Molding A: Assembly House Code XX: 7th and 8th Digits of Batch Number

Package Outline Dimensions (All dimensions in mm(inch).)

(1) Package Type: PSOP-8



Note: Eject hole, oriented hole and mold mark is optional.

Suggested Pad Layout

(1) Package Type: PSOP-8

Dimensions	Z	G	X	Y	X1	Y1	E
	(mm)/(inch)						
Value	6.900/0.272	3.900/0.154	0.650/0.026	1.500/0.059	3.600/0.142	2.700/0.106	1.270/0.050

IMPORTANT NOTICE

DIODES INCORPORATED MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARDS TO THIS DOCUMENT, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION).

Diodes Incorporated and its subsidiaries reserve the right to make modifications, enhancements, improvements, corrections or other changes without further notice to this document and any product described herein. Diodes Incorporated does not assume any liability arising out of the application or use of this document or any product described herein; neither does Diodes Incorporated convey any license under its patent or trademark rights, nor the rights of others. Any Customer or user of this document or products described herein in such applications shall assume all risks of such use and will agree to hold Diodes Incorporated and all the companies whose products are represented on Diodes Incorporated website, harmless against all damages.

Diodes Incorporated does not warrant or accept any liability whatsoever in respect of any products purchased through unauthorized sales channel. Should Customers purchase or use Diodes Incorporated products for any unintended or unauthorized application, Customers shall indemnify and hold Diodes Incorporated and its representatives harmless against all claims, damages, expenses, and attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized application.

Products described herein may be covered by one or more United States, international or foreign patents pending. Product names and markings noted herein may also be covered by one or more United States, international or foreign trademarks.

This document is written in English but may be translated into multiple languages for reference. Only the English version of this document is the final and determinative format released by Diodes Incorporated.

LIFE SUPPORT

Diodes Incorporated products are specifically not authorized for use as critical components in life support devices or systems without the express written approval of the Chief Executive Officer of Diodes Incorporated. As used herein:

- A. Life support devices or systems are devices or systems which:
 - 1. are intended to implant into the body, or
 - 2. support or sustain life and whose failure to perform when properly used in accordance with instructions for use provided in the labeling can be reasonably expected to result in significant injury to the user.
- B. A critical component is any component in a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or to affect its safety or effectiveness.

Customers represent that they have all necessary expertise in the safety and regulatory ramifications of their life support devices or systems, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of Diodes Incorporated products in such safety-critical, life support devices or systems, notwithstanding any devices- or systems-related information or support that may be provided by Diodes Incorporated. Further, Customers must fully indemnify Diodes Incorporated and its representatives against any damages arising out of the use of Diodes Incorporated products in such safety-critical, life support devices or systems.

Copyright © 2019, Diodes Incorporated

www.diodes.com